межгосударственный стандарт

РЕАКТИВЫ

Методы определения примеси сульфатов

ΓΟCT 10671.5—74

Reagents. Methods for the determination of sulfates

MKC 71.040.30 OKCTY 2609

Дата введения 01.07.75

Настоящий стандарт распространяется на химические реактивы и устанавливает методы определения примеси сульфатов: визуально-нефелометрический и фототурбидиметрический.

Методы основаны на образовании опалесценции сульфата бария при взаимодействии ионов бария и сульфата.

(Измененная редакция, Изм. № 1, 2).

1а. ОБШИЕ УКАЗАНИЯ

1а.1. Общие указания по проведению анализа — по ГОСТ 27025.

(Измененная редакция, Изм. № 1, 2).

- 1а.2. Масса навески анализируемого реактива, проведение предварительной обработки навески, масса сульфатов в растворах сравнения должны быть указаны в нормативно-технической документации на анализируемый реактив.
 - 1а.3. Масса сульфатов в навеске анализируемого реактива должна быть в пределах:
 - 0.01-0.10 мг при определении визуально-нефелометрическим методом (способ 1);
 - 0,02-0,10 мг при определении фототурбидиметрическим методом;
 - 0,05-0,50 мг при определении визуально-нефелометрическим методом (способы 2 и 3).
- 1а.4. При взвещивании навески анализируемого реактива и навесок реактивов для приготовления растворов, применяемых для анализа, результат взвещивания в граммах записывают с точностью до второго десятичного знака.
 - 1а.2—1а.4. (Измененная редакция, Изм. № 2).
- 1а.5. При необходимости следует проводить контрольный опыт на содержание сульфатов в применяемых для нейтрализации или разложения навески препарата количествах реактивов и в результат определения вводить соответствующую поправку.

(Введен дополнительно, Изм. № 1).

1а.6. Применяемый метод и необходимые условия определения должны быть предусмотрены в нормативно-технической документации на анализируемый реактив.

Температура растворов перед прибавлением раствора хлорида бария должна быть 20—25 °C. При температуре воздуха ниже 20 °C перед прибавлением раствора хлорида бария необходимо подогреть растворы в водяной бане с температурой 30—35 °C в течение 15 мин.

Раствор хлорида бария следует прибавлять к каждому раствору с одинаковой скоростью из бюретки при тщательном перемешивании.

1а.7. Для фильтрования растворов применяют обеззоленные фильтры «синяя лента», промытые горячей водой.

1а.6, 1а.7. (Измененная редакция, Изм. № 2).

1а.8. При необходимости растворы нейтрализуют растворами аммиака или соляной кислоты по универсальной индикаторной бумаге, если в нормативно-технической документации на анализируемый реактив нет других указаний (проба на вынос).

Издание официальное

Перепечатка воспрещена

,

5-1-1024

C. 2 FOCT 10671.5-74

1а.9. При наличии опалесценции в анализируемом растворе определение проводят фототурбидиметрическим методом с введением поправки на значение оптической плотности раствора анализируемого реактива.

1а.8, 1а.9. (Измененная редакция, Изм. № 1, 2).

1а.10. (Исключен, Изм. № 2).

1а.11. При хранении растворов реактивов (если нет указаний об ограничении сроков хранения их) в случае помутнения, образования хлопьев или осадка раствор заменяют свежеприготовленным

(Введен дополнительно, Изм. № 1).

1а.12. Определение примеси сульфатов необходимо проводить в помещении, изолированном от помещений, в которых работают с кислотами и легколетучими солями, содержащими сульфаты. (Измененная редакция, Изм. № 1, 2).

1. РЕАКТИВЫ, РАСТВОРЫ, ПОСУДА И ПРИБОРЫ

Барий хлористый (бария хлорид) по ГОСТ 4108, раствор с массовой долей 20 %; готовят по ГОСТ 4517.

Калий сернокислый (калия сульфат) по ГОСТ 4145; раствор готовят следующим образом: 0,02 г сульфата калия растворяют в смеси 30,0 см³ этанола и 70,0 см³ воды.

Кислота соляная по ГОСТ 3118, растворы с массовой долей 10 % и 25 %.

Крахмал растворимый по ГОСТ 10163, раствор с массовой долей 1 %; готовят по ГОСТ 4517 или этиленгликоль по ГОСТ 10164.

Спирт этиловый (этанол) ректификованный технический по ГОСТ 18300, высшего сорта.

Раствор, содержащий SO₄; готовят по ГОСТ 4212. Соответствующим разбавлением готовят раствор, содержащий 0,01 мг/см³ SO₄.

Бумага индикаторная универсальная.

Вода дистиллированная по ГОСТ 6709.

Бюретка 1(2)-2-25(50)-0,1 по ГОСТ 29251.

Колба 2-100-2 по ГОСТ 1770.

Колбы Кн-1—50(100)—14/23(19/26; 24/29; 29/32), Кн-2—50(100)—18(22; 34) ТХС по ГОСТ 25336.

Пипетки 6(7)—2—5(10; 25); 4(5)—2—1(2); 2—2—20(25) по ГОСТ 29227.

Стаканы B-1(2)—50 XC по ГОСТ 25336.

Цилиндр I-100 по ГОСТ 1770.

Фотоэлектроколориметр типа КФК-2 или другой с аналогичными метрологическими характеристиками или спектрофотометр.

Разд.1. (Измененная редакция, Изм. № 2).

2. ВИЗУАЛЬНО-НЕФЕЛОМЕТРИЧЕСКИЙ МЕТОД

2.1. Определение по способу 1

25,0 см³ нейтрального по универсальной индикаторной бумаге анализируемого раствора помещают в стакан или коническую колбу, прибавляют 1,0 см³ раствора соляной кислоты с массовой долей 10 %, 3,0 см³ раствора крахмала и 3,0 см³ раствора хлорида бария, тщательно перемешивая раствор после прибавления каждого реактива.

Одновременно таким же образом готовят раствор сравнения, содержащий в таком же объеме массу сульфатов, указанную в нормативно-технической документации на анализируемый реактив, и те же объемы растворов реактивов.

Сравнение интенсивности опалесценции анализируемого раствора и раствора сравнения проводят через 30 мин на темном фоне.

Допускается применение 2 см3 этиленгликоля в качестве стабилизатора.

(Измененная редакция, Изм. № 1, 2).

2.1.1-2.1.4. (Исключены, Изм. № 2).

2.2. (Исключен, Изм. № 1).

2.3. Определение по способу 2 (с затравкой)

К затравочному раствору, состоящему из 0,25 см³ раствора сульфата калия и 1,0 см³ раствора хлорида бария, прибавляют 20,0 см³ анализируемого раствора, подкисленного 0,5 см³ раствора соляной кислоты с массовой долей 25 %.

Одновременно таким же образом готовят раствор сравнения, содержащий в таком же объеме массу сульфатов, указанную в нормативно-технической документации на анализируемый реактив, и те же объемы растворов реактивов.

Сравнение интенсивности опалесценции анализируемого раствора и раствора сравнения проводят через 10 мин на темном фоне.

(Измененная редакция, Изм. № 2).

2.4. Определение по способу 3

46,0 см³ нейтрального по универсальной индикаторной бумаге анализируемого раствора помещают в коническую колбу вместимостью 100 см³, прибавляют 1,0 см³ раствора соляной кислоты с массовой долей 25 %, 3,0 см³ раствора хлорида бария, затем в течение 30 с тщательно перемеши-

Одновременно таким же образом готовят раствор сравнения, содержащий в таком же объеме массу сульфатов, указанную в нормативно-технической документации на анализируемый реактив, и те же объемы растворов реактивов.

Сравнение интенсивности опалесценции анализируемого раствора и раствора сравнения проводят через 15 мин на темном фоне.

(Введен дополнительно, Изм. № 2).

3. ФОТОТУРБИДИМЕТРИЧЕСКИЙ МЕТОД

3.1. Построение градунровочного графика

Готовят растворы сравнения. Для этого в конические колбы помещают растворы, содержащие 0,02; 0,04; 0,06; 0,08 и 0,10 мг SO₄, доливают объемы растворов водой до 25 см³ и перемешивают.

Одновременно готовят контрольный раствор, не содержащий SO,.

В каждый раствор прибавляют 1,0 см³ раствора соляной кислоты с массовой долей 10 %, 3,0 см³ раствора крахмала и тщательно перемешивают в течение 1 мин. Затем прибавляют 3,0 см³ раствора хлорида бария, снова перемешивают в течение 1 мин, а затем перемешивают периодически, через каждые 10 мин.

Через 40 мин оптическую плотность растворов сравнения измеряют по отношению к контрольному раствору при длине волны 480—490 нм в кюветах с толщиной поглощающего свет слоя 50 мм.

Допускается измерять оптическую плотность растворов при длине волны (400±10) нм. В этом случае оптическую плотность анализируемого раствора следует измерять также при этой же длине волны.

По полученным данным строят градуировочный график.

(Измененная редакция, Изм. № 2).

3.2. Проведение анализа

25,0 см³ нейтрального по универсальной индикаторной бумаге анализируемого раствора помещают в коническую колбу, прибавляют 1,0 см³ раствора соляной кислоты с массовой долей 10 %, 3,0 см³ раствора крахмала и тщательно перемещивают в течение 1 мин. Затем прибавляют 3,0 см³ раствора хлорида бария, снова перемещивают в течение 1 мин, а затем перемещивают периодически, через каждые 10 мин.

Через 40 мин оптическую плотность анализируемого раствора измеряют по отношению к контрольному раствору, приготовленному одновременно так же, как при построении градуировочного графика. По полученному значению оптической плотности, пользуясь графиком, находят массу сульфатов в анализируемом растворе в миллиграммах.

Допускается применение 2 см³ этиленгликоля в качестве стабилизатора.

(Измененная редакция, Изм. № 1, 2).

3.3. При анализе окращенных солей, а также если анализируемый раствор имеет опалесценцию или прицветку, определение проводят, как описано в п. 3.2, при этом контрольный раствор готовят следующим образом: к 25,0 см³ нейтрального по универсальной индикаторной бумаге анализируе-

5-1"

C. 4 FOCT 10671.5-74

мого раствора прибавляют 1,0 см³ раствора соляной кислоты с массовой долей 10 %, 3,0 см³ раствора крахмала, тщательно перемешивают в течение 1 мин, а затем прибавляют 3,0 см³ воды.

- 3.4. Определение сульфатов в солях одно- и двухвалентных металлов должно производиться из навесок массой не более 0,50 г (в этом случае влияние ионной силы раствора в условиях определения не сказывается).
- 3.5. При определении сульфатов в солях трех- и четырехвалентных металлов градуировочный график следует строить по растворам сравнения, содержащим анализируемый реактив без сульфатов, при этом методика его приготовления должна быть изложена в нормативно-технической документации на этот реактив. При использовании градуировочного графика, построенного по п. 3.1, навеска анализируемого реактива должна быть подобрана экспериментально.
 - 3.3—3.5. (Измененная редакция, Изм. № 2).
 - 3.6. (Исключен, Изм. № 2).
- 3.7. За результат анализа принимают среднее арифметическое результатов трех параллельных определений, относительное расхождение между которыми не превышает допускаемое расхождение, указанное в таблице.

Допускаемая относительная суммариая погрешность результата анализа при доверительной вероятности P = 0.95 представлена в таблице.

Масса сульфатов, мг	Допускаемое расхождение (относитель- но определяемой массы сульфатов), %	Допускаемая суммарная погрешность (относительно определяёмой массы сульфатов), %
От 0,02 до 0,03 включ.	25	±20
Св 0,03 » 0,10 »	25	±15

(Измененная редакция, Изм. № 2).

ПРИЛОЖЕНИЕ. (Исключено, Изм. № 2).

ИНФОРМАЦИОННЫЕ ДАННЫЕ

- 1. РАЗРАБОТАН И ВНЕСЕН Министерством химической промышленности СССР
- 2. УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Постановлением Государственного комитета стандартов Совета Министров СССР от 05.08.74 № 1885
- 3. ВЗАМЕН ГОСТ 10671-63 в части разд. VII IX
- 4. Стандарт содержит все требования стандарта СЭВ 1430-78
- 5. ССЫЛОЧНЫЕ НОРМАТИВНО-ТЕХНИЧЕСКИЕ ДОКУМЕНТЫ

Обозначение НТД, на который дана ссыдка	Номер раздела, пункта	Обозначение НТД, на который дана ссылка	Номер раздела, пункта
ΓΟCT 1770—74	Pasa, 1	FOCT 10163—76	Paga, 1
ΓΟCT 3118—77	Pasa, 1	FOCT 10164—75	Paga, 1
ΓΟCT 4108—72	Pasa, 1	FOCT 18300—87	Paga, 1
ΓΟCT 4145—74	Pasa, 1	FOCT 25336—82	Paga, 1
ΓΟCT 4212—76	Pasa, 1	FOCT 27025—86	1a.1
ΓΟCT 4517—87	Pasa, 1	FOCT 29227—91	Paga, 1
ΓΟCT 6709—72	Pasa, 1	FOCT 29251—91	Paga, 1

- Ограничение срока действия снято по протоколу № 5—94 Межгосударственного совета по стандартизации, метрологии и сертификации (ИУС 11-12—94)
- 7. ИЗДАНИЕ с Изменениями № 1, 2, утвержденными в марте 1980 г., октябре 1988 г. (ИУС 5-80, 1-89)

5-2-1024