МЕЖГОСУДАРСТВЕННЫЙ СТАНДАРТ

РЕАКТИВЫ

СЕРЕБРО АЗОТНОКИСЛОЕ

ТЕХНИЧЕСКИЕ УСЛОВИЯ

Издание официальное

межгосударственный стандарт

Реактивы

СЕРЕБРО АЗОТНОКИСЛОЕ

ΓΟCT 1277—75

Технические условия

Reagents. Silver nitrate. Specifications

MKC 71.040.30 OKΠ 26 2511 0020 03

Дата введения 01.01.76

Настоящий стандарт распространяется на азотнокислое серебро, которое представляет собой бесцветные светочувствительные кристаллы, в массе — белого цвета, легко растворяется в воде.

Формула: AgNO3.

Молекулярная масса (по международным атомным массам 1971 г.) - 169,87.

(Измененная редакция, Изм. № 1).

1. ТЕХНИЧЕСКИЕ ТРЕБОВАНИЯ

 1.1а. Азотнокислое серебро должно быть изготовлено в соответствии с требованиями настоящего стандарта по технологическому регламенту, утвержденному в установленном порядке.

(Введен дополнительно, Изм. № 1).

 По физико-химическим показателям азотнокислое серебро должно соответствовать требованиям и нормам, указанным в табл. 1.

Таблица 1

	Норма			
Навменование показателя	Химически чистый (х.ч.) ОКП 26 2511 0023 00	Чистый для анализа (ч.д.а.) ОКП 26 2511 0022 01	Чистый (ч.) ОКП 26 2511 0021-02	
 Массовая доля азотно-кислого серебра (AgNO₃), %, не менее 	99,9	99,8	99,7	
2. Массовая доля нерастворимых в воде веществ, %, не более	0,003	0.004	0,010	
3. Массовая доля не осаждаемых соляной кислотой веществ, %, не более	001	0,04	0,06	
 Массовая доля сульфатов (SO₄), %, не бо- лее 	0,002	0,003	0,005	
5. Массовая доля хлоридов (С1), %, не более	0,0002	0,0005	0,0010	

Издание официальное

Перепечатка воспрещена

*

© Издательство стандартов, 1975 © СТАНДАРТИНФОРМ, 2008

	Норма			
Наименование показателя	Химически чистый (х.ч.) ОКП 26 2511 0023 00	Чистый для анадиза (ч.д.в.) ОКП 26 2511 0022-01	Чистый (ч.) ОКП 26 2511 0021 02	
6. Массовая доля железа (Fe), %, не более	0,0002	0,0003	0,0005	
7. Массовая доля висмута (Ві), %, не более	0,0005	0,0010	0,0020	
8. Массовая доля меди (Си), %, не более	0,0005	0,0020	0,0030	
9. Массовая доля свинца (Рв), %, не более	0,0005	0,0005	0,0010	
10. Свободная азотная кислота	Должен выдерживать испытание по п. 3.9.			

(Измененная редакция, Изм. № 1).

2. ПРАВИЛА ПРИЕМКИ

Правила приемки — по ГОСТ 3885.

3. МЕТОДЫ АНАЛИЗА

З.1а. Общие указания по проведению анализа — по ГОСТ 27025.

При взвешивании применяют лабораторные весы общего назначения типов ВЛР-200 г и БЛКТ-500 г-М или ВЛЭ-200 г.

Допускается применение других средств измерения с метрологическими характеристиками и оборудования с техническими характеристиками не хуже, а также реактивов по качеству не ниже указанных в настоящем стандарте.

(Введен дополнительно, Изм. № 1).

- 3.1. Пробы отбирают по ГОСТ 3885. Масса средней пробы не должна быть менее 260 г.
- 3.2. Определение массовой доли азотнокислого серебра
- 3.2.1. Аппаратура, реактивы и растворы:

пипетка 6(7)-2-5(10) по НТД;

стакан B(H)-1-600 TXC по ГОСТ 25336;

тигель фильтрующий типа ТФ ПОР10 или ТФ ПОР16 по ГОСТ 25336;

цилиндр 1(3)-50 и 1-500 по ГОСТ 1770;

вода дистиллированная по ГОСТ 6709;

кислота азотная по ГОСТ 4461, раствор с массовой долей 25 %; готовят по ГОСТ 4517; и разбавленная 1:100;

кислота соляная по ГОСТ 3118, раствор с массовой долей 4 %;

серебро азотнокислое по настоящему стандарту, раствор с массовой долей 1,7 %.

3.2.2. Проведение анализа

Около 5,0000 г препарата помещают в стакан, растворяют в 350 см³ воды, прибавляют 5 см³ раствора азотной кислоты с массовой долей 25 %, нагревают до кипения и приливают осторожно, при постоянном перемешивании, 40 см³ раствора соляной кислоты. Нагревание и перемешивание продолжают до тех пор, пока осадок не соберется в комки, после этого дают осадку отстояться в течение 3 ч в затемненном месте на водяной бане. Осадок количественно переносят на фильтрующий тигель, предварительно высушенный до постоянной массы и взвешенный (результат взвешивания в граммах записывают до четвертого десятичного знака) промывают на фильтре разбавленной азотной кислотой до отрицательной реакции на ион-хлора (проба с раствором азотнокислого серебра) и два раза холодной водой по 10 см³. Тигель с осадком сушат сначала при 100 °C не менее 2 ч, а затем при 130 °C до постоянной массы.

3.2.3. Обработка результатов

Массовую долю азотнокислого серебра (Х) в процентах вычисляют по формуле

$$X = \frac{m_i \cdot 1,1853 \cdot 100}{m}$$
,

где m — масса навески препарата, г;

 m_1 — масса высушенного осадка, г;

1,1853 — коэффициент пересчета хлористого серебра на азотнокислое серебро.

За результат анализа принимают среднее арифметическое результатов двух параллельных определений, абсолютное расхождение между которыми не превышает допускаемое расхождение, равное 0,1 %.

Допускаемая абсолютная суммарная погрешность результата анализа ± 0.06 % при доверительной вероятности P = 0.95.

Чтобы ускорить анализ, допускается проводить определение из 1 г препарата, с использованием 1 см³ раствора азотной кислоты с массовой долей 25 % и 8 мл раствора соляной кислоты.

3.2.1—3.2.3. (Измененная редакция, Изм. № 1).

3.3. Определение массовой доли нерастворимых в воде веществ

3.3.1. Аппаратура, реактивы и растворы:

колба 2-500-2 по ГОСТ 1770;

колба Ки-2-500-34 (40, 50) по ГОСТ 25336;

пипетка 4(5)-2-1(2) по НТД;

тигель фильтрующий типа ТФ ПОР10 или ТФ ПОР16 по ГОСТ 25336;

цилиндр 1(3)-100 по ГОСТ 1770;

вода дистиллированная по ГОСТ 6709;

кислота азотная по ГОСТ 4461, раствор с массовой долей 25 %; готовят по ГОСТ 4517, и разбавленная 1:100.

3.3.2. Проведение анализа

50,00 г препарата помещают в мерную колбу, растворяют в воде, прибавляют 0,5 см³ раствора азотной кислоты с массовой долей 25 %, доводят объем раствора водой до метки, тщательно перемешивают и фильтруют через фильтрующий тигель, предварительно высушенный до постоянной массы и взвешенный (результат взвешивания в граммах записывают до четвертого десятичного знака).

Фильтрат без промывных вод переливают в чистую сухую коническую колбу и сохраняют для определения неосаждаемых соляной кислотой веществ по п. 3.4 и хлоридов по п. 3.6.

Остаток на фильтре промывают 100 см³ разбавленной азотной кислоты и 50 см³ воды и сушат в сушильном шкафу при 105—110 °C до постоянной массы.

Препарат считают соответствующим требованиям настоящего стандарта, если масса остатка после высушивания не будет превышать:

для препарата химически чистый - 1,5 мг;

для препарата чистый для анализа — 2,0 мг;

для препарата чистый - 5,0 мг.

Допускаемая относительная суммарная погрешность результата анализа \pm 35 % для препарата квалификации «химически чистый», \pm 25 % для препарата квалификации «чистый для анализа» и \pm 10 % для препарата квалификации «чистый» при доверительной вероятности P = 0.95.

3.3.1, 3.3.2. (Измененная редакция, Изм. № 1).

 Определение массовой доли неосаждаемых соляной кислотой вешеств

3.4.1. Аппаратура, реактивы и растворы

пипетки 4(5)-2-2, 6(7)-2-25 и 6(7)-2-10 по НТД;

стакан B(H)-1-400 TXC по ГОСТ 25336;

тигель H-40(50) по ГОСТ 19908 или тигель низкий 3 по ГОСТ 9147;

цилиндр 1(3)-250 по ГОСТ 1770;

чаша 100 по ГОСТ 19908 или чашка выпарительная 3 по ГОСТ 9147;

вода дистиллированная по ГОСТ 6709;

кислота азотная по ГОСТ 4461, раствор с массовой долей 25 %; готовят по ГОСТ 4517;

кислота соляная по ГОСТ 3118, раствор с массовой долей 25 %; готовят по ГОСТ 4517.

3.4.2. Проведение анализа

125 см³ фильтрата, полученного по п. 3.3.2 (соответствуют 12,5 г препарата), помещают цилиндром в стакан (с меткой на 250 см³), прибавляют 2 см³ раствора азотной кислоты, доводят объем водой до 200 см³, нагревают до кипения, прибавляют по каплям 12,5 см³ раствора соляной кислоты, продолжая нагревание и перемешивание содержимого стакана до тех пор, пока осадок не соберется в комки. Осадку дают отстояться в темном месте в течение 2—3 ч, доводят объем раствора водой до метки и фильтруют через обеззоленный фильтр «синяя лента», отбрасывая первую порцию фильтрата.

200 см³ фильтрата (соответствуют 10 г препарата) порциями помещают цилиндром в кварцевую или фарфоровую чашку, выпаривают до 5 см³, затем количественно переносят в тигель, высушенный до постоянной массы и взвешенный (результат взвешивания в граммах записывают до четвертого десятичного знака) и выпаривают досуха на водяной бане (остальной фильтрат сохраняют для определения сульфатов по п. 3.5).

Остаток сущат в сущильном шкафу при 105—110 °C до постоянной массы и взвещивают (результат взвещивания в граммах записывают до четвертого десятичного знака).

Одновременно проводят контрольный опыт, выпаривая досуха 250 см³ воды, содержащих 10 см³ раствора соляной кислоты. Остаток сушат в сушильном шкафу при 105—110 °C до постоянной массы и взвещивают (результат взвешивания в граммах записывают до четвертого десятичного знака).

Препарат считают соответствующим требованиям настоящего стандарта, если разность масс высушенных остатков (анализируемого и контрольного) не будет превышать;

```
для препарата химически чистый — 1 мг;
для препарата чистый для анализа — 4 мг;
для препарата чистый — 6 мг.
```

Допускается относительная суммарная погрешность результата анализа \pm 45 % для препарата квалификации «химически чистый», \pm 15 % для препарата квалификации «чистый для анализа» и \pm 10 % для препарата квалификации «чистый» при доверительной вероятности P=0.95.

3.4.1, 3.4.2. (Измененная редакция, Изм. № 1).

3.5. Определение массовой доли сульфатов

Определение проводят по ГОСТ 10671.5 фототурбидиметрическим или визуально-нефелометрическим (способ 1) методом. При этом 20 см³ фильтрата, полученного по п. 3.4.2 (соответствуют 1 г препарата), помещают в выпарительную чашку (ГОСТ 9147), прибавляют 1 см³ раствора углекислого натрия квалификации «химически чистый» с массовой долей 1 % (ГОСТ 83) и выпаривают досуха на водяной бане. Остаток растворяют в 25 см³ воды и, если раствор мутный, его фильтруют через обеззоленный фильтр «синяя лента». Далее определение проводят по ГОСТ 10671.5.

Препарат считают соответствующим требованиям настоящего стандарта, если масса сульфатов не будет превышать:

```
для препарата химически чистый — 0.02 \text{ мг}; для препарата чистый для анализа — 0.03 \text{ мг}; для препарата чистый — 0.05 \text{ мг}.
```

При разногласиях в оценке массовой доли сульфатов анализ проводят фототурбидиметрическим методом.

3.6. Определение массовой доли хлоридов

Определение проводят по ГОСТ 10671.7 фототурбидиметрическим (способ 2) или визуально-нефелометрическим (способ 2) методом. При этом 5,00 г препарата помещают в коническую колбу вместимостью 100 см³ (с меткой на 40 или 50 см³) и растворяют в 30 см³ воды. Далее определение проводят по ГОСТ 10671.7, прибавляя 1 см³ раствора азотнокислого серебра вместо 2 см³.

Препарат считают соответствующим требованиям настоящего стандарта, если масса хлоридов не будет превышать:

```
для препарата химически чистый — 0,010 \text{ мг}; для препарата чистый для анализа — 0,025 \text{ мг}; для препарата чистый — 0,050 \text{ мг}.
```

При разногласиях в оценке массовой доли хлоридов анализ проводят фототурбидиметрическим методом.

3.5, 3.6. (Измененная редакция, Изм. № 1).

3.7. Определение массовой доли железа

3.7.1. Аппаратура, реактивы и растворы:

пипетки 4(5)-2-1(2), 6(7)-2-5(10) и 6(7)-2-25 по HTД;

стакан B-1(2)-100 или колба Kн-2-100-22 по ГОСТ 25336;

аммиак волный по ГОСТ 3760:

вода дистиллированная по ГОСТ 6709;

кислота сульфосалициловая 2-водная по ГОСТ 4478, раствор с массовой долей 10 %;

раствор массовой концентрации Fe 1 мг/см³; готовят по ГОСТ 4212; соответствующим разбавлением готовят раствор массовой концентрации Fe 0,01 мг/см³.

3.7.2. Проведение анализа

2,00 г препарата помещают в стакан или коническую колбу, растворяют в 30 см³ воды, прибавляют 2 см³ раствора 2-водной сульфосалициловой кислоты, перемешивают, прибавляют 10 см³ водного аммиака и снова перемешивают.

Препарат считают соответствующим требованиям настоящего стандарта, если наблюдаемая окраска анализируемого раствора не будет интенсивнее окраски раствора, приготовленного одновременно с анализируемым и содержащего в таком же объеме:

для препарата химически чистый — 0,004 мг Fe;

для препарата чистый для анализа — 0,006 мг Fe;

для препарата чистый - 0,010 мг Fe;

2 см³ раствора 2-водной сульфосалициловой кислоты и 10 см³ водного аммиака.

3.7.1, 3.7.2. (Измененная редакция, Изм. № 1).

3.8. Определение массовой доли висмута, меди, свинца

3.8.1. Аппаратура, реактивы и растворы

спектрограф ИСП-30, ИСП-28 или ИСП-22 с трехлинзовой системой освещения щели, трехступенчатым ослабителем;

генератор дуги переменного тока ДГ-1 или ДГ-2;

выпрямитель постоянного тока ВАРС 230-70 или генератор БИГ-300;

микрофотометр МФ-2 или МФ-4;

спектропроектор ПС-18;

угли графитовые для спектрального анализа (электроды) диаметром 6 мм; верхний электрод заточен на конус, нижний — с цилиндрическим каналом диаметром 4 мм и глубиной 4.5 мм;

фотопластинки спектральные, тип 2, относительной чувствительностью 15 ед.;

пипетка 4(5)-2-1 по НТД;

ступка агатовая или из органического стекла;

аммоний хлористый по ГОСТ 3773;

вода дистиллированная по ГОСТ 6709;

гидрохинон (парадиоксибензол) по ГОСТ 19627;

калий бромистый по ГОСТ 4160;

метол (4-метиламинофенол сульфат) по ГОСТ 25664;

натрий сульфит 7-водный;

натрий серноватистокислый (натрия тиосульфат) 5-водный по ГОСТ 27068;

натрий углекислый по ГОСТ 83 или натрий углекислый 10-водный по ГОСТ 84;

серебро азотнокислое, х.ч., не содержащее примесей меди, свинца, висмута или с минимальной их массовой долей, определенной методом добавок в условиях данной методики;

растворы массовой концентрации Рь. Ві, Си 1 мг/см3: готовят по ГОСТ 4212:

проявитель метолгидрохиноновый; готовят следующим образом: раствор A-2 г метола, 10 г гидрохинона и 104 г 7-водного сульфита натрия растворяют в воде, доводят объем раствора водой до 1 дм³, перемешивают и, если раствор мутный, его фильтруют;

раствор Б—16 г углекислого натрия (или 40 г 10-водного углекислого натрия) и 2 г бромистого калия растворяют в воде, доводят объем раствора водой до 1 дм³, перемешивают и, если раствор мутный, его фильтруют. Затем растворы А и Б смешивают в равных объемах;

фиксаж быстродействующий; готовят следующим образом: 500 г 5-водного серноватистокислого натрия и 100 г хлористого аммония растворяют в воде, доводят объем раствора водой до 2 дм³; перемешивают и, если раствор мутный, его фильтруют;

спирт этиловый ректификованный технический по ГОСТ 18300, высший сорт.

C. 6 FOCT 1277-75

3.8.2. Подготовка анализируемой пробы

0,50 г препарата помещают в ступку и растирают в течение 10 мин.

3.8.3. Приготовление образцов для построения градуировочного графика

Для приготовления образца A, содержащего по 0,02 % Pb и Bi и 0,04 % Cu, 2,5 г азотнокислого серебра (основы) помещают в ступку и прибавляют по 0,5 мг Pb Bi и 1 мг Cu в виде растворов, содержащих 1 мг/см³. После введения каждой примеси содержимое ступки подсушивают под инфракрасной лампой, охлаждают и тщательно растирают в течение 4 ч.

Остальные образцы с убывающей массовой долей примесей готовят разбавлением предыдущего образца в соответствии с табл. 2.

Навеску берут с погрещностью не более 0,0001 г.

Таблина 2

Номер	Массовая доля вримеси, %		Масса	Macca	Общая масса	
образца	Pb	Bi	Сu	основы, г	разбавленного обра- образца, т	образца, г
1 2 3 4	0,0020 0,0010 0,0005 0,00025	0,0020 0,0010 0,0005 0,00025	0,0040 0,0020 0,0010 0,0005	16,2 9,0 8,0 5,0	1,80бр.A 9,00бр.1 8,00бр.2 5,00бр.3	18,0 18,0 16,0 10,0

При изготовлении образцов учитывается массовая доля примесей Рb, Вi и Сu в азотнокислом серебре (основе), определяемых методом добавок в условиях данной методики.

3.8.4. Рекомендуемые условия анализа

 Сила тока
 8 А

 Ширина щели
 0,015 мм

 Высота диафрагмы на средней линзе конденсорной системы
 3,2 мм

 Экспозиция
 30 с

Анализ проводят в дуге постоянного тока.

Перед съемкой спектрограммы угольные электроды предварительно обжигают в дуге постоянного тока при силе тока 12 А в течение 30 с и снимают спектрограмму на отсутствие в электродах Рb, Вi, Cu.

3.8.5. Проведение анализа

После обжига электродов и их охлаждения в каналы трех нижних электродов помещают по 0,08 г анализируемой пробы, зажигают дугу постоянного тока и снимают спектрограмму. Так же поступают с образцами для построения градуировочного графика.

Спектры анализируемой пробы и образцов снимают на одной пластинке не менее трех раз.

3.8.6. Обработка спектрограмм и результатов

Фотопластинки со снятыми спектрами проявляют, фиксируют, промывают в проточной воде и высушивают на воздухе. Затем проводят фотометрирование аналитических спектральных линий определяемых элементов и соседнего фона по подходящей ступени ослабителя, пользуясь логарифмической шкалой:

Рь-283,31 нм, Ві-306,77 нм, Си-324,75 нм:

Для каждой аналитической пары вычисляют разность почернений (Δ S)

$$\Delta S = S_{n+\Phi} - S_{\Phi},$$

где $S_{n+\frac{1}{4}}$ — почернение линии + фона;

 $S_{\rm ds}$ — почернение фона.

По трем значениям разности почернений определяют среднее арифметическое значение $\Delta S'$ для каждого элемента в анализируемой пробе и образце.

По значениям $\Delta S'$ аналитических пар линий примесей образца строят градуировочный график для каждого определяемого элемента, откладывая на оси абсцисс логарифмы концентраций, а на оси ординат — среднее арифметическое значение разности почернений ($\Delta S'$).

Массовую долю каждой примеси в анализируемой пробе находят по графику.

За результат анализа принимают среднее арифметическое результатов трех параллельных определений, расхождение между наиболее отличающимися значениями которых не превышает допускаемое расхождение, равное 40 %.

Допускаемая относительная суммарная погрешность результата анализа ± 20 % при доверительной вероятности P = 0.95.

- 3.8.1—3.8.6. (Измененная редакция, Изм. № 1).
- 3.9. Определение свободной азотной кислоты
- 3.9.1. Аппаратура, реактивы и растворы:

колба Кн-2-50-22 XC по ГОСТ 25336;

пипетка 6(7)—2—10 по НТД:

вода дистиллированная по ГОСТ 6709;

кислота серная по ГОСТ 4204, раствор концентрации $c(1/2 \text{ H}_2\text{SO}_4) = 0.1 \text{ моль/дм}^3$ (0,1 н.); готовят по ГОСТ 25794.1;

метиловый красный (индикатор), спиртовой раствор с массовой долей 0,1 %; готовят по ГОСТ 4919.1;

спирт этиловый ректификованный технический по ГОСТ 18300 высшего сорта.

3.9.2. Проведение анализа

В две конические колбы помещают по 1,00 г препарата, растворяют в 10 см³ воды и прибавляют по одной капле раствора метилового красного; затем в одну из колб прибавляют 1 каплю раствора серной кислоты.

Препарат считают соответствующим требованиям настоящего стандарта, если наблюдаемая розовая окраска раствора в колбе, содержащей серную кислоту, будет интенсивнее окраски раствора в колбе без серной кислоты.

3.9, 3.9.1, 3.9.2. (Измененная редакция, Изм. № 1).

4. УПАКОВКА, МАРКИРОВКА, ТРАНСПОРТИРОВАНИЕ И ХРАНЕНИЕ

Препарат упаковывают и маркируют в соответствии с ГОСТ 3885.

Вид и тип тары: 2т-1, 2т-4, 2т-7, 2т-8.

Группа фасовки: III, IV, V, VI.

Тару маркируют по ГОСТ 14192 с нанесением знаков опасности по ГОСТ 19433 (класс 5, черт. 5, подкласс 5.1, классификационный шифр 5112) и серийного номера ООН 1493.

(Измененная редакция, Изм. № 1).

- Препарат перевозят всеми видами транспорта в соответствии с правилами перевозки грузов, действующими на данном виде транспорта.
- Препарат хранят в упаковке изготовителя в крытых складских помещениях, не допуская воздействия прямых солнечных лучей.

5. ГАРАНТИИ ИЗГОТОВИТЕЛЯ

- Изготовитель гарантирует соответствие азотнокислого серебра требованиям настоящего стандарта при соблюдении условий хранения и транспортирования.
 - Гарантийный срок хранения препарата два года со дня изготовления.
 - 5.1, 5.2. (Измененная редакция, Изм. № 1).

6. ТРЕБОВАНИЯ БЕЗОПАСНОСТИ

6.1. Азотнокислое серебро может действовать прижигающе и вяжуще на кожу и слизистые оболочки; с белком образует нерастворимые соединения. Окислитель дает воспламеняющиеся смеси.

(Измененная редакция, Изм. № 1).

C. 8 FOCT 1277-75

- 6.2. При работе с азотнокислым серебром следует применять индивидуальные средства защиты (марлевые повязки, респираторы, защитную спецодежду), не допуская попадания препарата на кожные покровы, слизистые оболочки и внутрь организма.
- 6.3. Предельно допустимая концентрация азотнокислого серебра в воздухе рабочей зоны 0,5 мг/м³, второй класс опасности по ГОСТ 12.1,005.
- 6.4. Помещения, в которых проводятся работы с продуктом, должны быть оборудованы общей приточно-вытяжной вентиляцией, а места наибольшего пыления укрытиями с местной вытяжной вентиляцией; а места наибольшего пыления укрытиями с местной вытяжной вентиляцией; испытание препарата в лабораториях следует проводить в вытяжном шкафу.
 - 6.3, 6.4. (Измененная редакция, Изм. № 1).

ИНФОРМАЦИОННЫЕ ДАННЫЕ

1. РАЗРАБОТАН И ВНЕСЕН Министерством химической промышленности СССР

РАЗРАБОТЧИКИ

- А.С. Мунькин, Л.Н. Серебрякова, Л.С. Кример, Г.В. Грязнов, В.Г. Брудзь, И.Л. Ротенберг, З.М. Ривина, З.М. Сульман, Л.В. Кидиярова
- УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Постановлением Государственного комитета стандартов Совета Министров СССР от 22.01.75 № 128
- 3. **ВЗАМЕН ГОСТ 1277-63**
- 4. В стандарт введен МС ИСО 6353-2-82 (Р. 28) в части квалификации х.ч.
- 5. ССЫЛОЧНЫЕ НОРМАТИВНО-ТЕХНИЧЕСКИЕ ДОКУМЕНТЫ

Обозначение НТД, на который дана ссылка	Номер пункта, подпункта		
FOCT 12.1.005-88	6.3		
TOCT 83-79	3.5; 3.8.1		
FOCT 84-76	3.8.1		
FOCT 1770—74	3.2.1; 3.3,1; 3.4.1		
TOCT 3118-77	3.2.1; 3.4.1		
FOCT 3760—79	3.7.1		
FOCT 3773—72	3.8,1		
TOCT 3885-73	2.1; 3.1; 4.1		
FOCT 4160-74	3.8.1		
FOCT 4204-77	3.9,1		
FOCT 4212—76	(3.7.1; 3.8.1		
FOCT 4461—77	3.2.1; 3.3.1; 3.4.1		
FOCT 4478—78	3.7.1		
OCT 4517-87	3.2.1; 3.3.1; 3.4.1		
FOCT 4919.1—77	3.9.1		
COCT 6709—72	3.2.1; 3.3.1; 3.4.1; 3.7.1; 3.8.1; 3.9.1		
OCT 9147-80	3.4.1; 3.5		
FOCT 10671,5-74	3.5		
FOCT 10671.7—74	3.6		
FOCT 14192-96	4.1		
TOCT 18300-87	3.8.1; 3.9.1		
FOCT 1943388	4.1		
FOCT 19627—74	3.8.1		
FOCT 19908-90	3.4.1		
	3.2.1; 3.3.1; 3.4.1; 3.7.1; 3.8.1		
TOCT 25336—82	3:2.1; 3.3.1; 3.4.1; 3.7.1; 3.9.1		
FOCT 25664—83	3.8.1		
TOCT 25794.1—83	3.9.1		
TOCT 27025-86	3:1a		
FOCT 27068—86	3,8.1		

- Ограничение срока действия снято по протоколу № 5—94 Межгосударственного совета по стандартизации, метрологии и сертификации (ИУС 11-12—94)
- 7. ИЗДАНИЕ (октябрь 2008 г.) с Изменением № 1, утвержденным в мае 1990 г. (ИУС 8-90)

Редактор О.А. Стояновская
Технический редактор В.Н. Прусакова
Корректор Т.Н. Кононенко
Компьютерная верстка А.Н. Золотаревой

Сдано в набор 13.11.2008. Подписано в печать 28.11.2008. Формат 60х84³/₈. Бумага офсетная. Гарнитура Таймс, Печать офсетная. Усл. печ. л. 1,40. Уч. над. л. 0,95. Тяраж 82 экз. Зак. 1348.

ФГУП «СТАНДАРТИНФОРМ», 123995 Москва, Гранатный пер., 4.

www.gostinfo.ru info@gostinfo.ru

Набрано во ФГУП «СТАНДАРТИНФОРМ» на ПЭВМ

Отпечатано в филиале ФГУП «СТАНДАРТИНФОРМ» - тип. «Московский печатник», 105062 Москва, Лялин пер., 6

