ТИТАН ГУБЧАТЫЙ

Метод определения вольфрама

Издание официальное

E3 11-99

МЕЖГОСУДАРСТВЕННЫЙ СОВЕТ ПО СТАНДАРТИЗАЦИИ, МЕТРОЛОГИИ И СЕРТИФИКАЦИИ Минск

Предисловие

РАЗРАБОТАН Межгосударственным техническим комитетом по стандартизации МТК 105,
 Украинским научно-исследовательским и проектным институтом титана

ВНЕСЕН Государственным комитетом Украины по стандартизации, метрологии и сертификации

 ПРИНЯТ Межгосударственным Советом по стандартизации, метрологии и сертификации (протокол № 9 от 12 апреля 1996 г.)

За принятие проголосовали:

Наименование государства	Наименование национального органа по стандартизации
Азербайджанская Республика Республика Беларусь Республика Казахстан Российская Федерация Туркменистан Украина	Азгосстандарт Госстандарт Беларуси Госстандарт Республики Казахстан Госстандарт России Главная государственная инспекция Туркменистана Госстандарт Украины

3 Постановлением Государственного комитета Российской Федерации по стандартизации и метрологии от 19 октября 1999 г. № 353-ст межгосударственный стандарт ГОСТ 9853.16—96 введен в действие непосредственно в качестве государственного стандарта Российской Федерации с 1 июля 2000 г.

4 ВВЕДЕН ВПЕРВЫЕ

© ИПК Издательство стандартов, 2000

Настоящий стандарт не может быть полностью или частично воспроизведен, тиражирован и распространен в качестве официального издания на территории Российской Федерации без разрешения Госстандарта России

Содержание

1	.Область применения	
2	Нормативные ссылки	
3	Общие требования	
4	Средства измерений и вспомогательные устройства I	
5	Порядок проведения измерений	
6	Обработка результатов измерений	
?	Допустимая погрешность измерений	
8	Требования к квалификации 3	

МЕЖГОСУДАРСТВЕННЫЙ СТАНДАРТ

ТИТАН ГУБЧАТЫЙ

Метод определения вольфрама

Sponge titanium. Method for determination of tungsten

Дата введения 2000-07-01

1 Область применения

Настоящий стандарт устанавливает фотометрический метод определения вольфрама (при массовой доле фольфрама от 0,005 % до 0,5 %) в губчатом титане по ГОСТ 17746.

Метод основан на образовании в солянокислой среде окрашенного в желто-зеленый цвет комплексного соединения вольфрама (V) с роданидом аммония с последующим измерением оптической плотности раствора.

2 Нормативные ссылки

В настоящем стандарте использованы ссылки на следующие стандарты:

ГОСТ 8.315—97 Государственная система обеспечения единства измерений. Стандартные образцы. Основные положения, порядок разработки, аттестации, утверждения, регистрации и применения

ГОСТ 4204-77 Кислота серная, Технические условия

ГОСТ 4328-77 Натрия гидроокись. Технические условия

ГОСТ 4461-77 Кислота азотная. Технические условия

ГОСТ 14261-77 Кислота соляная особой чистоты. Технические условия

ГОСТ 17746-96 Титан губчатый. Технические условия

ГОСТ 18289—78 Натрий вольфрамовокислый 2-водный. Технические условия

ГОСТ 23780-96 Титан губчатый. Методы отбора и подготовки проб

ГОСТ 25086-87 Цветные металлы и их сплавы. Общие требования к методам анализа

ГОСТ 27067-86 Аммоний роданистый. Технические условия

3 Общие требования

- Общие требования к методу анализа по ГОСТ 25086.
- Отбор и подготовку проб проводят по ГОСТ 23780.
- Массовую долю вольфрама определяют по двум навескам.

4 Средства измерений и вспомогательные устройства

Спектрофотометр или колориметр фотоэлектрический концентрационный типа КФК-2, или аналогичный прибор.

Кислота соляная по ГОСТ 14261, r = 1,19 г/см³, и разбавленная 1:1, 2:1.

Кислота серная по ГОСТ 4204, разбавленная 1:1 и 1:4.

Кислота азотная по ГОСТ 4461.

Натрия гидроксид по ГОСТ 4328, растворы массовых концентраций 20 и 200 г/дм3.

Аммония роданид (аммоний роданистый) по ГОСТ 27067, раствор массовой концентрации 500 г/дм³:

Издание официальное

1

Титана трихлорид (титана (III) хлорид) по действующему нормативному документу, раствор массовой концентрации 10 г/дм³. Раствор титана трихлорида массовой концентрации 10 г/дм³ готовят следующим образом: 1 г стружки титана марки ТГ-120 помещают в коническую колбу вместимостью 250 см³, приливают 50 см³ раствора соляной кислоты (2:1), накрывают часовым стеклом или стеклянной воронкой и ведут растворение при нагревании, поддерживая постоянный объем добавлением раствора соляной кислоты. Раствор охлаждают до комнатной температуры, переносят в мерную колбу вместимостью 100 см³, доливают раствором соляной кислоты (2:1) до метки и перемешивают.

Титан губчатый марки ТГ-120 по ГОСТ 17746.

Натрия вольфрамат (натрий вольфрамовокислый) 2-водный по ГОСТ 18289.

Фильтр «белая лента» по действующему нормативному документу.

Стандартные образцы по ГОСТ 8.315.

Стандартные растворы вольфрама.

Раствор А: 1,7941 г вольфрамата натрия помещают в коническую колбу вместимостью 250 см³, приливают 100 см³ раствора гидроксида натрия массовой концентрации 20 г/дм³ и растворяют при умеренном нагревании. Раствор охлаждают до комнатной температуры, переносят в мерную колбу вместимостью 1000 см³, доливают раствором гидроксида натрия массовой концентрации 20 г/дм³ до метки и перемешивают.

1 см³ раствора А содержит 0,001 г вольфрама.

Раствор Б: 5 см³ раствора А помещают в мерную колбу вместимостью 100 см³, доливают раствором гидроксида натрия массовой концентрации 20 г/дм³ до метки и перемешивают.

1 см³ раствора Б содержит 0,00005 г вольфрама.

5 Порядок проведения измерений

5.1 Навеску пробы массой 0,5—2,0 г помещают в коническую колбу вместимостью 250 см³, приливают 70 см³ раствора соляной кислоты (1:1), колбу накрывают часовым стеклом или стеклянной воронкой и ведут растворение пробы при нагревании, поддерживая постоянный объем добавлением раствора соляной кислоты. После полного растворения навески в раствор добавляют по каплям азотную кислоту до исчезновения фиолетовой окраски, приливают 20 см³ раствора серной кислоты (1:1), выпаривают до появления паров серной кислоты и продолжают нагревание в течение 3 мин.

Раствор охлаждают до комнатной температуры, приливают 40 см³ воды и нагревают до растворения солей, после чего нейтрализуют раствором гидроксида натрия массовой концентрации 200 г/дм³ до появления первого помутнения. К раствору (для удаления появившегося помутнения) добавляют несколько капель серной кислоты (1:4) и раствор осторожно переносят в мерную колбу вместимостью 200 см³, содержащую 30 см³ кипящего раствора гидроксида натрия массовой концентрации 200 г/дм³ (при этом происходит осаждение гидроксидов железа, никеля, титана, циркония, хрома, ниобия). Раствор с осадком охлаждают, доливают водой до метки и перемешивают. Через 20—25 мин раствор фильтруют через сухой фильтр средней плотности «белая лента».

Аликвотную часть раствора $5-20 \text{ см}^3$ помещают в сухую мерную колбу вместимостью 50 см^3 , приливают 20 см^3 соляной кислоты ($r = 1,19 \text{ г/см}^3$).

Раствор охлаждают, приливают 3 см³ раствора роданида аммония и по каплям прибавляют примерно 15 капель (порциями по 5 капель) раствора трихлорида титана устойчивой желто-зеленой окраски. До метки доливают раствором соляной кислоты (1:1) и перемешивают.

Через 15 мин измеряют оптическую плотность раствора при длине волны 440 нм толщиной поглощающего слоя 50 мм. Раствором сравнения служит раствор контрольного опыта. Массовую долю вольфрама в пробе рассчитывают по градуировочному графику.

5.2 Для построения градуировочного графика в шесть из семи мерных колб вместимостью 50 см³ помещают 0,1; 0,5; 1,0; 1,5; 2,0; 2,5 см³ стандартного раствора Б, что соответствует 0,000005; 0,000025; 0,000050; 0,000075; 0,000100; 0,000125 г вольфрама. Раствор седьмой колбы является раствором контрольного опыта.

Во все колбы приливают по 1 см³ раствора гидроксида натрия массовой концентрации 200 г/дм³, 20 см³ соляной кислоты (r = 1,19 г/см³). Раствор охлаждают, добавляют 3 см³ раствора роданида аммония и далее поступают, как указано в 5.1.

По полученным значениям оптической плотности и соответствующим им массам вольфрама строят градуировочный график.

6 Обработка результатов измерений

Массовую долю вольфрама Х, %, вычисляют по формуле

$$X = \frac{m_1 V}{m V_1} \cdot 100, \tag{1}$$

где m₁ — масса вольфрама в растворе пробы, г;

V — общий объем раствора пробы, см³;

m — масса навески, г;

 V_1 — объем аликвотной части раствора пробы, см³.

7 Допустимая погрешность измерений

7.1 Расхождение между результатами измерений и результатами анализа (при доверительной вероятности P = 0,95) не должно превышать допускаемых значений, указанных в таблице 1.

Таблица 1

Впроцентах

Массоная доля вольфрама	Допускаемое расхождение между результатами параллельных измерений	Допускаемое расхождение между результатами анализа	Предел погрешности измерений В
От 0,0050 до 0,0150 включ.	0,0020	0,0025	0,0020
Св. 0,015 » 0,050 »	0,004	0,005	0,004
« 0,050 » 0,150 »	0,008	0,009	0,007
« 0,150 » 0,500 »	0,015	0,018	0,015

 7.2 Контроль точности результатов анализа проводят по стандартному образцу в соответствии с ГОСТ 25086.

Допускается проводить контроль точности результатов анализа по методу добавок в соответствии с ГОСТ 25086.

Добавками является стандартный раствор А.

8 Требования к квалификации

К выполнению анализа допускается химик-аналитик квалификации не ниже 4-го разряда,

ГОСТ 9853.16-96

УДК 669.295:546.78.06:006.354

MKC 77.120

B59

OKCTY 1709

Ключевые слова: титан губчатый, определение вольфрама, фотометрический метод.

Реавктор Л.И. Нахимова Технический редактор В.Н. Прусакова Корректор В.И. Варенцова Компьютерная верстка Л.А. Круговай

Йзд. лиц. № 021007 от 10;08:95.

Сдано в набор 22.02.2000. Подписано в печать Уч.-изд. л. 0,45. Тираж 204 экз. С 4896. Зак. 324.

Подписано в печать 14.04.2000.

Усл. печ. л. 0,93.

ИПК Издательство стандартов, 107076, Москва, Колодезный пер., 14. Набрано в Издательстве на ПЭВМ Филиал ИПК Издательство стандартов — тип. "Московский печатник", 103062; Москва, Лядин пер., 6. Плр № 080102

