

ГОСУДАРСТВЕННЫЯ СТАНДАРТ СОЮЗА ССР

НИКЕЛЬ, СПЛАВЫ НИКЕЛЕВЫЕ И МЕДНО-НИКЕЛЕВЫЕ

методы определения алюминия ГОСТ 6689.8—92

Издание официальное

ГОССТАНДАРТ РОССИИ

Mackey

Epynna B59

ГОСУДАРСТВЕННЫМ СТАНДАРТ СОЮЗА ССР

НИКЕЛЬ, СПЛАВЫ НИКЕЛЕВЫЕ И МЕДНОникелевые

Методы определения алюминия

LOCL 6689.8 - 92

Nickel, nickel and copper-nickel alloys. Methods for the determination of aluminium

OKCTY 1709

Дата введения 01.01.93

Настоящий стандарт устанавливает титриметрический метод определения алюминия (при массовой доле алюминия от 1 до 3,5 %), фотометрический метод (при массовой доле алюминия от 0.005 по 0.5 %) и атомно-абсорбционный метод (при массовой доле алюминия от 0.01 до 3,5 %) в никеле, никелевых и медно-никелевых сплавах по ГОСТ 492 и ГОСТ 19241.

1. ОБЩИЕ ТРЕБОВАНИЯ

Общие требования к методам анализа — по ГОСТ 25086 с дополнением по разд. 1 ГОСТ 6689.1.

2. ТИТРИМЕТРИЧЕСКИЯ МЕТОД ОПРЕДЕЛЕНИЯ АЛЮМИНИЯ

2.1. Сущность метода

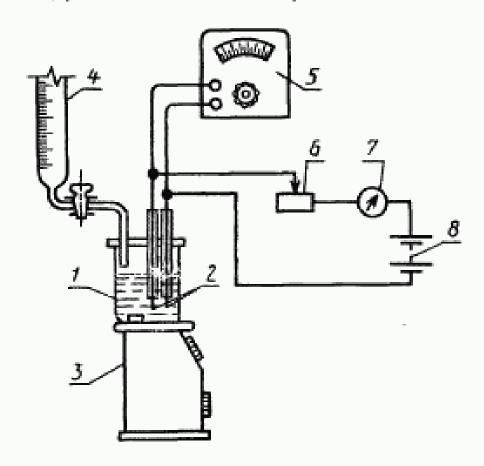
Метод основан на связывании всех компонентов анализируемого сплава в комплексы раствором трилона Б, титровании избытка трилона Б раствором сульфата меди, разложении комплексоната алюминия фторидом аммония или натрия и последующем определении алюминия титрованием стандартным раствором меди (H) амперметрически или в присутствии индикатора I (2-пиридилазо) -2-нафтола.

2.2. Аппаратура, реактивы и растворы рН-метр рН 340 или другой прибор того же класса со всеми принадлежностями.

Издание официальное

(С) Издательство стандартов, 1992

Настоящий стандарт не может быть полностью или частично воспроизведен,


ТНРЯЖ НОВВИЕ И РАСПРОСТРАНЕН боз разрешения Госстандарта России.

ТОСТ 6889.8-92, Никель, сплавы никелевые и медно-никелевые. Методы определения алюминия

Nickel, nickel and copper-nickel alloys. Methods for the determination of aluminium

Установка для титрования с амперометрической индикацией конечной точки титрования (чертеж) состоит из стакана I вместимостью 250—300 см³ для анализируемого раствора; двух платиновых индикаторных электродов 2 длиной 20—25 мм и диаметром 0,8—1 мм; магнитной мешалки 3 для перемешивания раствора в процессе титрования; источника заданного тока 8 (аккумулятора или сухой батарен) напряжением 1,8 В; переменного сопротивления 6 на 1 МОм для установления поляризующего тока 2—10 мкА; микроамперметра 7 со шкалой на 25 мкА, последовательно включенного в цепь; потенциометра 5, включенного параллельно в цепьдля измерения напряжения на электродах; бюретки 4 вместимостью 25 см³.

Цена деления шкалы потенциометра должна быть не менее 5 мв, что при скачке потенциала в точке эквивалентности обеспечивает отклонение стрелки по шкале прибора не менее чем на 20—25 делений. В качестве потенциометра можно использовать рНметры рН 340, рН 121 или ЛПМ-60 в режиме милливольтметра.

Кислота азотная по ГОСТ 4461, разбавленная 1:1. Кислота соляная по ГОСТ 3118, разбавленная 1:1 и 1:5. Кислота серная по ГОСТ 4204, разбавленная 1:1. Кислота фтористоводородная по ГОСТ 10484. Кислота уксусная по ГОСТ 61.

Водорода перекись по ГОСТ 10929, 30 % - ный раствор

Смесь для обновления поверхности электродов: к 20 см³ соляной кислоты (1:5) добавляют несколько капель перекиси водорода.

Уротропин.

Аммиак водный по ГОСТ 3760, разбавленный 1 : 1.

Аммоний уксусновислый по ГОСТ 3117, раствор 200 г/дм³.

Аммоний фтористый по ГОСТ 4518. Натрий фтористый по ГОСТ 4463.

Этилендиамин — N,N,N',N'-тетрауксусной кислоты динатриевая соль, двуводная (трилон Б) по ГОСТ 10652, раствор 100 г/дм³.

1-(2-пиридилазо)-2-нафтол (ПАН), спиртовый раствор 5 г/дм³. Марганец (П) сернокислый 5-водный по ГОСТ 435, раствор, содержащий 1 мг/дм³ марганца: 2,75 г соли растворяют в 1 дм³ воды.

Спирт этиловый ректификованный технический по ГОСТ 18300. Карбамид (мочевина) по ГОСТ 6691, раствор 100 г/дм³.

Медь марки М0 и М00 по ГОСТ 859.

Стандартные растворы меди 0,05 и 0,02 моль/дм³ растворы: 3,177 г (0,05 моль/дм³) и 1,2708 г (0,02 моль/дм³) меди растворяют в 30 см³ азотной кислоты (1:1), кипятят до удаления окислов азота, охлаждают, нейтрализуют аммиаком до появления неисчезающего осадка, который растворяют добавлением уксусной кислоты и разбавляют водой до 1 дм³.

Алюминий марки А99 или А9 по ГОСТ 11069.

Стандартный раствор алюминия: 1 г алюминия растворяют в 10 см² соляной кислоты (1:1), раствор переносят в мерную колбу вместимостью 1000 см³ и доливают до метки водой.

1 см3 раствора содержит 0,001 г алюминия.

- 2.2.1. Установка массовой концентрации стандартного раствора 0,02 моль/дм³ меди
- 2.2.1.1. С визуальной индикацией конечной, точки титрования

10 см³ стандартного раствора алюминия помещают в коническую колбу вместимостью 500 см³, разбавляют водой до 50—60 см³, нейтрализуют раствором аммиака до образования неисчезающего осадка, который растворяют добавлением соляной кислоты, послечего прибавляют еще две капли кислоты. Добавляют 10 см³ раствора трилона Б, 100—150 см³ горячей воды и нагревают раствор до кипения. В горячий раствор приливают 10 см³ раствора уксуснокислого аммоиня, 0,5 см³ раствора ПАН и титруют горячий раствор стандартным раствором 0,05 моль/дм³ меди до перехода оранжевой окраски раствора в синюю. Добавляют і г фтористого натрия или аммония, кипятят 5 мин и титруют стандартным раствором 0,02 моль/дм³ меди до перехода зеденой окраски раствора в синюю.

2.2.1.2. С амперометрической индикацией конечной точки титрования

10 см³ стандартного раствора алюминия помещают в стакан вместимостью 300 см³, добавляют 20 см³ воды, 1 см³ раствора сер-

нокислого марганца и 10 см³ раствора трилона Б.

Устанавливают рН раствора 6,0—6,2 по рН-метру, добавляя небольшими порциями уротропин и кипятят раствор 5 мин. После охлаждения устанавливают стакан на магнитную мешалку и погружают в раствор платиновые электроды. С помощью переменного сопротивления устанавливают в цепи ток 2—10 мкА, включают потенциометр и устанавливают стрелку на шкале потенциометра приблизительно на середине шкалы. Оттитровывают избыток трилона Б стандартным раствором меди при перемешивании раствора. Титрант подают в стакан приблизительно со скоростью 1 см³/мин. К концу титрования стандартный раствор меди добавляют по каплям, Титрование считают законченным, если от добавления одной капли раствора меди стрелка потенциометра отклонится не менее чем на 20 делений шкалы (100 мВ).

Добавляют 1 г фторида натрия или аммония, устанавливают рН 6,0—6,2 (по рН-метру) добавлением нескольких капель азотной кислоты (1:1) или уротропина и кипятят раствор 5 мин. После охлаждения раствор потенциометрически титруют стандартным раствором меди, как описано выше.

Массовая концентрация раствора меди (T), выраженная в граммах алюминия на 1 см³ раствора, вычисляется по формуле

$$T = \frac{0.01}{V}$$

где 0,01 — масса алюминия, соответствующая аликвотной части, взятая для титрования, г;

 V — объем стандартного раствора меди, израсходованный на второе титрование, см³.

2.3. Проведение анализа

2.3.1. Для сплава кунцаль

2.3.1.1. Определение с визуальной индикацией конечной точки титрования

Навеску сплава массой 0,25 г помещают в коническую колбу вместимостью 500 см³, добавляют 10 см³ азотной кислоты и растворяют при нагревании. После растворения сплава стенки колбы ополаскивают водой и раствор кипятят 1—2 мин для удаления окислов азота. Раствор охлаждают, добавляют 10 см³ раствора мочевины и нейтрализуют раствором аммиака до образования ненсчезающего осадка, который растворяют добавлением соляной кислоты. После чего прибавляют еще две капли кислоты, добавляют 20 см³ раствора трилона Б, 100 см³ горячей воды и далее анализ

2.3.1.2. Определение с амперометрической ин-

дикацией конечной точки титрования

Навеску сплава массой 0,25 г помещают в стакан вместимостью 300 см³, добавляют 10 см³ азотной кислоты, накрывают часовым стеклом, стеклянной или пластиковой пластинкой и растворяют при нагревании. После растворения сплава стекло вли пластинку и стенки стакана ополаскивают водой и раствор выпаривают до влажного остатка.

Стакан охлаждают, добавляют 20 см³ воды, 1 см³ раствора сернокислого марганца, 20 см³ раствора трилона Б и далее анализ ведут, как указано в п. 2,2,1,2,

2.3.2. Для сплава алюмель

2.3.2.1. Определение с визуальной индикацией конечной точки титрования

Навеску сплава массой 0,25 г помещают в платиновую чашку, добавляют 10 см³ азотной кислоты, 2—3 см³ фтористоводородной кислоты, накрывают крышкой из фторопласта или платины и растворяют при нагревании. После растворения сплава крышку и стенки чашки ополаскивают водой, добавляют 10 см³ серной кислоты (1:1) и упаривают до начала выделения белого дыма серной кислоты. Охлажденный остаток растворяют в 50 см³ воды при нагревании. Раствор переносят в коническую колбу вместимостью 500 см³ и нейтрализуют раствором аммиака до образования неисчезающего осадка, который растворяют добавлением соляной кислоты, после чего прибавляют еще две капли кислоты и далее поступают, как указано в п. 2.2.1.1.

2.3.2.2. Определение с амперометрической индикацией конечной точки титрования

Навеску сплава массой 0,25 г помещают в платиновую чашку, добавляют 10 см³ азотной кислоты и 2—3 см³ фтористоводородной кислоты, чашку накрывают крышкой из фторопласта или платины и растворяют при нагревании. После растворения сплава крышку и стенки чашки ополаскивают водой, добавляют 10 см³ серной кислоты и упаривают до начала выделения белого дыма серной кислоты. Охлажденный остаток растворяют в воде при нагревании. Раствор переносят в стакан вместимостью 300 см³ и далее поступают, как указано в п. 2.3.1.2.

- 2.4. Обработка результатов
- 2.4.1. Массовую долю алюминия (X) в процентах вычисляют по формуле

$$X = \frac{V \cdot T \cdot 100}{m}$$

где V — объем раствора меди, израсходованный на второе титро-

- Т массовая концентрация раствора меди, выраженная в г/см³ алюминия;
- т масса навески сплава, г.
- 2.4.2. Расхождения результатов трех параллельных определений d (показатель сходимости) и результатов двух анализов D (показатель воспроизводимости) не должны превышать значений допускаемых расхождений, приведенных в табл. 1.

Таблина 1

					Допустаемые	Допустаемые раскожденка, «,		
Массевая деля алюшина, -,					d	D		
OT CH:	0,03 0,05 0,10 0,15 0,25	*	0,010 0,03 0,05 0,10 0,15 0,25 0,50	ВКЛЮЧ. 3- 3- 3- 3- 3-	0,002 0,003 0,005 0,008 0,010 0,015 0,025	0,003 0,004 0,007 0,01 0,01 0,02 0,03		
ЛТ Дв.	3,0	>	3,0	,	0,10 0,20	0,1 0,3		

2.4.3. Контроль точности результатов анализа проводят по Государственным стандартным образцам (ГСО) или по отраслевым стандартным образцам (ОСО) или по стандартным образцам предприятия (СОП) никелевых и медно-никелевых сплавов, утвержденным по ГОСТ 8.315, или сопоставлением результатов, полученных атомно-абсорбционным методом, в соответствии с ГОСТ 25086.

3. ФОТОМЕТРИЧЕСКИЯ МЕТОД ОПРЕДЕЛЕНИЯ АЛЮМИНИЯ

3.1. Сущность метода

Метод основан на измерении оптической плотности комплексного соединения алюминия с эриохромцианином R или хромазуродом S после отделения алюминия соосаждением с гидроокисью железа.

3.2. Аппаратура, реактивы и растворы

Фотоэлектроколориметр или спектрофотометр.

pH-метр pH 340 или любой прибор того же класса со всеми принадлежностями.

Кислота азотная по 4461, разбавленная 1 : 1 и 1 : 50.

Кислота соляная по ГОСТ 3118, разбавленная 1:1, 1 и 0,1 моль/дм^а растворы.

Кислота серная по ГОСТ 4204, разбавленная 1:1, 1:4 и 1:5, Смесь кислот, свежеприготовленная: соляная и азотная в соотно-

TO TO 6689.8-92, Никель, сплавы никелевые и медно-никелевые. Методы определения алюминия

Кислота тиогликолевая, разбавленная 1 : 10, свежеприготовленная.

Кислота аскорбиновая по нормативно-технической документации, свежеприготовленный раствор 10 г/дм³.

Кислота уксусная по ГОСТ 61.

Серебро азотнокислое по ГОСТ 1277, водный раствор 10 г/дм³. Аммоний надсернокислый по ГОСТ 20478, раствор 200 г/дм³.

Аммоний хлористый по ГОСТ 3773 и раствор 20 г/дм³.

Квасцы железоаммонийные по ГОСТ 4205.

Растворы железоаммонийных квасцов.

Раствор А: 10 г железоаммонийных квасцов растворяют при нагревании в 70 см³ воды с добавлением 1 см³ концентрированной серной кислоты и разбавляют водой до 100 см³.

Раствор Б: 10 см³ раствора A разбавляют водой до 100 см³. Натрий серноватистокислый по ГОСТ 4216, раствор 50 г/дм³.

Аммиак водный по ГОСТ 3760, разбавленный 1:1, 1:3, 1:50.

Аммоний уксуснокислый по ГОСТ 3117.

Натрий уксусновислый по ГОСТ 199 и раствор 500 г/дм³.

Натрия гидроокись по ГОСТ 4328, 1 моль/дм³ раствор.

Буферный раствор (pH 6): 46 г уксусновислого аммония и 18 г уксусновислого натрия растворяют в 1 дм³ воды. Устанавливают рН раствора по рН-метру, добавляя, в случае необходимости, гидроокись натрия или уксусную кислоту.

Карбамид (мочевина) по ГОСТ 6691.

Тиомочевина по ГОСТ 6344, раствор 100 г/дм³.

Желатин, раствор 10 г/дм³.

Эриохромциамин R водный раствор 0,7 г/дм³: 0,7 г эриохромцианина R растворяют в 2 см³ концентрированной азотной кислоты при постоянном перемещивании в течение 2 мин, добавляют 60 см³ воды, 0,3 г мочевины и выдерживают 24 ч в темном месте. Раствор фильтруют в мерную колбу вместимостью 1 дм³, доливают до метки водой и хранят в темной склянке.

Спирт этиловый ректификованный технический по ГОСТ 18300.

Хромазурол S, раствор 3 г/дм³: 0,3 г хромазурола растворяют в 30 см³ теплой воды (не выше 60 °C), 20 см³ этилового спирта, отфильтровывают и доливают водой в колбе вместимостью 100 см³ до метки.

Алюминий по ГОСТ 11069, марки А99 или А9.

Стандартные растворы алюминия.

Раствор А: 0,1 г алюминия растворяют при нагревании в 20 см³ соляной кислоты (1:1). Раствор переводят в мерную колбу вместимостью 1000 см³ и доливают водой до метки.

1 см³ раствора содержит 0,0001 г алюминия.

Раствор Б: 2,5 мл раствора А переносят в мерную колбу вместимостью 50 см³, добавляют 20 см³ соляной кислоты (1:1) и до1 см³ раствора Б содержит 0,000005 г алюминия.

3.3. Проведение анализа

3.3.1. Для сплава манганин

Навеску сплава массой 0,25 г растворяют в стакане вместимостью 250-300 см³ в 8 см³ азотной кислоты (1:1). Раствор разбавляют водой до 150—200 см³ воды, добавляют 20 см³ раствора над-сернокислого аммония, нагревают и кипятят 15—20 мин до полного разложения надсернокислого аммония (до полного прекращения выделения пузырьков кислорода). Выпавший осадок двускиси марганца отфильтровывают на плотный фильтр. Стакан и осадок. промывают 6-8 раз водой. Осадок отбрасывают. В фильтрат добавляют I см³ раствора Б железоаммонийных квасцов, 2 г хлористого аммония и осаждают гидроокиси алюминия и железа аммиаком (1:1), приливая его небольшими порциями при перемешивании раствора, до перехода меди и никеля в растворимый комплекс и появления слабого запаха аммиака. Раствор с осадком выдерживают 15-20 мин в темном месте, осадок отфильтровывают на неплотный фильтр и промывают стакан и осадок на фильтре раствором хлористого аммония. Промытый осадок емывают с фильтра горячей водой в стакан, в котором производилось осаждение, и растворяют в 5 см³ горячей соляной кислоты (1:1). Фильтр промывают горячей водой. Стакан с раствором нагревают до полного растворения осадка, раствор упаривают до 70-80 см³, переносят в мерную колбу вместимостью 100 см³ и доливают водой до метки.

3.3.1.1. Определение с применением эриохроминанина R

В мерную колбу вместимостью 100 см³ помещают 2 см³ полученного раствора, добавляют воду до 20 см³, 10 см³ раствора тиогликолевой кислоты, вводят по каплям аммиак (1:1) до появления окраски тногликолята железа, затем прибавляют 1 моль/дм³ раствор соляной кислоты до обесцвечивания раствора и 0,5 см³ в избыток. Добавляют 20 см³ раствора эрнохромцианина R, 30 см³ буферного раствора и доливают до метки водой.

При установке рН раствора по рН-метру аликвотную часть раствора помещают в стакан, добавляют воду до 20 см³, 2 см³ раствора аскорбиновой кислоты, 5 см³ раствора серноватистокислого натрия, спустя 5—10 мин добавляют 20 см³ раствора эриохром-цианина R и устанавливают рН 6 по рН-метру аммиаком (1:1). Переносят в мерную колбу вместимостью 100 см³, добавляют 30 см³ буферного раствора и доливают водой до метки. Спустя 20 мин, измеряют оптическую плотность раствора на фотоэлектро-колориметре с зеленым светофильтром в кювете с толшиной поглощающего свет слоя 2 см или на спектрофотометре при 535 нм в кювете с толщиной поглощающего свет слоя 1 см. Раствором.

3.3.1.2. Определение с применением хромазурола S

В стакан вместимостью 100 см³ помещают 2 см³ полученного раствора и упаривают почти досуха. К остатку добавляют 5 см³ соляной кислоты (0,1 моль/дм³) и нагревают до растворения. Затем разбавляют водой до 30 см³, добавляют 1 см³ раствора тиомочевины, 3 см³ раствора тиогликолевой кислоты и устанавливают рН 4 на рН-метре или по универсальной бумажке раствором аммиака (1:3). Затем добавляют 10 см³ раствора желатина, 3 см³ раствора хромазурола и раствор помещают в мерную колбу вместимостью 100 см³, добавляют 40 см³ буферного раствора, до метки доливают водой и перемешивают.

Через 40—50 мин измеряют оптическую плотность раствора на фотоэлектроколориметре с зеленым светофильтром (λ_{эф} = 540—560 нм) или на спектрофотометре при 545 нм в кюветах с толщиной поглощающего свет слоя 2 или 1 см³. Раствором сравнения служит раствор контрольного опыта.

3.3.2. Для сплава хромель

Навеску сплава массой 0,5 г помещают в стакан вместимостью 500—600 см³, добавляют 20 см³ смеси кислот, накрывают часовым стеклом, стеклянной или пластиковой пластинкой и растворяют при нагревании. После растворения ополаскивают стекло или пластинку и стенки стакана водой, добавляют 10 см³ серной кислоты (1:1) и упаривают до появления белого дыма серной кислоты.

После охлаждения приливают 50 см3 воды и растворяют остаток при нагревании. Добавляют 1 см³ раствора Б железоаммонийных квасцов, воду до 150-200 см2, нагревают до 60-70 °C, приливают 12 см³ раствора азотнокислого серебра, 20 см³ раствора надсернокислого аммония и кипятят 15-20 мин до разложения надсернокислого аммония (до полного прекращения выделения пузырьков кислорода). Раствор охлаждают до 60°C и прибавляют аммиак до перехода никеля в растворимый аммиачный комплекс и слабого запаха аммиака. Раствор с осадком выдерживают 20-30 мин в теплом месте для коагуляции осадка, осадок отфильтровывают на неплотный фильтр и промывают стакан и фильтр с осадком 5-6 раз раствором хлористого аммония. Промытый осадок смывают с фильтра струей горячей воды в стакан, в котором проводилось осаждение. Фильтр промывают 20 см3 серной кислоты (1:4), а затем 5-6 раз горячей водой. Раствор разбавляют водой до 200 см3, добавляют 5 см3 раствора азотнокислого серебра, 20 см3 раствора надсернокислого аммония и кипятят 15-20 мин до полного разложения надсернокислого аммония (до полного прекращения выделения пузырьков кислорода). Затем повторяют осаждение гидроокисей алюминия и железа аммиаком.

Промытый осадок смывают с фильтра горячей водой в стакан, в котором проводилось осаждение, и промывают фильтр 5 см³ Б Б Т ГОСТ 6689.8-92, Никель, сплавы никелевые и медно-никелевые. Методы определения алюминия

горячей соляной кислоты (1:1), а затем 5—6 горячей водой. Раствор переносят в мерную колбу вместимостью 100 см³ и доливают до метки водой.

В зависимости от массовой доли алюминия в сплаве отбирают соответствующую аликвотную часть (см. табл. 2) и далее анализ проводят, как указано в пп. 3.3.1.1 и 3.3.1.2.

Таблица 2

Массован доон элиминин в сплав	г, Масса навес- ин, г	Аликвоткай часть расуво- ра, см ⁴	Масса навёсий. сортастите униван аляжносной час- ти, с	
От 0,005 до 0,01 включ. Св. 0,01 » 0,025 » » 0,025 » 0,05 » » 0,05 » 0,1 » » 0,1 » 0,2 » » 0,2 » 0,5 »	1 0,5 0,5 0,5 0,25	20 10 10 5 2,0 2,0	0,2 0,1 0,05 0,025 0,01 0,005	

3.3.3. Для сплавов, содержащих вольфрам

Навеску сплава массой 1 г помещают в стакан вместимостью 300 см³, приливают 20 см³ азотной кислоты (1:1), накрывают часовым стеклом, стеклянной или пластиковой пластинкой и растворяют при нагревании. После растворения сплава часовое стекло или пластинку и стенки стакана ополаскивают водой, раствор упаривают до сиропообразного состояния, разбавляют водой до 60 см³ и выдерживают 30—40 мин в теплом месте для осветления раствора. Осадок отфильтровывают на плотный фильтр с фильтробумажной массой и промывают 5—6 раз теплой азотной кислотой (1:50) и выбрасывают.

В фильтрат добавляют I см³ раствора Б железоаммонийных квасцов, 2 г хлористого аммония и далее поступают, как указано в п. 3.3.1. В мерную колбу вместимостью 100 см³ помещают 20 см³ полученного раствора и далее поступают, как указано в п. 3.3.1.1 или 3.3.1.2.

3.3.4. Для остальных сплавов

Навеску сплава массой 1 г помещают в стакаи вместимостью 300 см³, приливают 20 см³ азотной кислоты (1:1), стакан накрывают часовым стеклом, стеклянной или пластиковой пластинкой и растворяют при нагревании. После растворения сплава часовое стекло или пластинку и стенки стакана ополаскивают водой, раствор разбавляют водой до 150 см³, добавляют 1 см³ раствора Б железоаммонийных квасцов, 2 г хлористого аммония и далее поступают, как указано в п. 3.3.1.

Для фотометрирования в мерную колбу вместимостью 100 см³ помещают 20 см³ полученного раствора и далее поступают, как указано в п. 3.3.1.1 или 3.3.1.2.

3.3.5. Построение градуировочного графика

В мерные колбы вместимостью по 100 см² помещают 1,0; 2,0; 3,0; 4,0 и 5,0 см³ стандартного раствора Б алюминия, доливают водой до 20—30 см² и далее поступают, как указано в п. 3.3.1.1 или 3.3.1.2.

3.4. Обработка результатов

3.4.1. Массовую долю алюминня (X) в процентах вычисляют по формуле

$$X = \frac{m_1 \cdot 100}{m}$$
,

где m_1 — масса алюминия, найденная по градунровочному графику, г;

 т — масса навески, соответствующая аликвотной части раствора, г.

3.4.2. Расхождения результатов трех параллельных определений d (показатель сходимости) и результатов двух анализов D (показатель воспроизводимости) не должны превышать значений

допускаемых расхождений, приведенных в табл. 1.

3.4.3. Контроль точности результатов анализа проводят по Государственным стандартным образцам (ГСО) или по отраслевым стандартным образцам (ОСО), или по стандартным образцам предприятия (СОП) никеля, никелевых и медно-никелевых сплавов, утвержденным по ГОСТ 8.315, или методом добавок или сопоставлением результатов, полученных атомно-абсорбционным методом, в соответствии с ГОСТ 25086.

4. АТОМНО-АБСОРБЦИОННЫЙ МЕТОД ОПРЕДЕЛЕНИЯ АЛЮМИНИЯ

4.1. Сущность метода

Метод основан на измерении абсорбции света атомами алюминия, образующимися при введении анализируемого раствора в пламя ацетилен — закись азота.

4.2. Аппаратура, реактивы и растворы

Атомно-абсорбционный спектрометр с источником излучения для алюминия.

Кислота азотная по ГОСТ 4461, разбавленная 1:1.

Кислота соляная по ГОСТ 3118, разбавленная 1:1.

Кислота фтористоводородная по ГОСТ 10484.

Кислота серная по ГОСТ 4204, разбавленная 1 : 1.

Водорода перекись по ГОСТ 10929.

Аммоний хлористый по ГОСТ 3773.

Железо хлорное по ГОСТ 4147, раствор 15 г/дм³: 1,5 г хлорного железа растворяют в 30 см³ соляной кислоты (1:1) и разбавляют

PC TO CO 10689 6-W, Никель, сплавы никелевые и медно-никелевые. Методы определения алюминия Nickel, nickel and copper-nickel alloys. Methods for the determination of aluminium

Аммиак водный по ГОСТ 3760, разбавленный 1 : 19. Калий хлористый по ГОСТ 4237, раствор 200 г/дм³.

Алюминий по ГОСТ 11069.

Стандартный раствор алюминия: 0,1 г алюминия растворяют при нагревании с 10 см³ соляной кислоты (1:1). Раствор переносят в мерную колбу вместимостью 100 см³ и доливают водой до метки.

1 см3 раствора содержит 0,001 г алюминия.

Медь по ГОСТ 859.

Раствор меди: 10 г меди растворяют при нагревании в 80 см³ азотной кислоты (1:1). Раствор переносят в мерную колбу вместимостью 100 см³ и доливают водой до метки.

1 см³ раствора содержит, 0,1 г меди.

Никель по ГОСТ 849.

Раствор никеля: 10 г никеля растворяют при нагревании в 80 см³ азотной кислоты (1:1). Раствор переносят в мерную колбу вместимостью 100 см³ и доливают водой до метки.

I см³ раствора содержит 0,1 г никеля.

4.3. Проведение анализа

4.3.1. Для сплавов, не содержащих кремния и хрома

Для сплавов с массовой долей алюминия менее 0,1 % навеску массой, приведенной в табл. 3, помещают в стакан вместимостью 600 см³ и растворяют при нагревании в 30 см³ азотной кислоты (1:1). После растворения раствор разбавляют водой до объема 200 см³, добавляют 3—4 г хлористого аммония и 5 см³ раствора хлорного железа (если массовая доля железа в сплаве менее 0,5 %).

Табляца З

	Mai	o 0.8 W	н долг	наломиния. %	Матея навоски, г	Объем раствора медя или полели, см ^в
OT CB.	0,01 0,1 0,5 1,0	ДО ДО 20	0,1 0,5 1,0 3,5	включ. э »	3 1 0,5 0,1	10 5

Раствор нагревают до 70—80 °C, добавляют аммиак до полного перехода меди или никеля в растворимый аммиачный комплекс и раствор выдерживают в теплом месте в течение 20 мин, затем раствор фильтруют через фильтр средней плотности, осадок промывают теплым раствором аммиака (1:19). Осадок на фильтре растворяют в 10 см³ соляной кислоты (1:1) с добавлением 2—4 канель перекиси водорода, фильтр промывают горячей водой, раствор переносят в мерную колбу вместимостью 100 см³. Раствор переносят в мерную колбу вместимостью 100 см³. Раствор

охлаждают, добавляют 2 см³ раствора хлористого калия и доливают водой до метки.

Для сплавов с массовой долей алюминия свыше 0,1 % навеску массой, приведенной в табл. 3, растворяют при нагревании в 10 см³ азотной кислоты (1:1).

Раствор переносят в мерную колбу вместимостью 100 см³, добавляют 2 см³ раствора хлористого калия и доливают водой дометки.

Измеряют атомную абсорбцию алюминия в пламени ацетилензакись азота при длине волны 309,3 нм параллельно с градуировочными растворами.

4.3.2. Для сплавов, содержащих кремний и хром

Навеску сплава (см. табл. 3) помещают в платиновую чашку и растворяют при нагревании в 10—30 см³ азотной кислоты (1:1) и 2—6 см³ фтористоводородной кислоты. Затем добавляют 10 см³ серной кислоты (1:1) и упарнвают до появления белого дыма серной кислоты. Чашку охлаждают и остаток растворяют в 50 см³ воды при нагревании. При массовой доле алюминия менее 0,1 % поступают, как указано в п. 4.3.1.

При массовой доле алюминия свыше 0,1 % раствор переносят в мерную колбу вместимостью 100 см³, добавляют 2 см³ раствора хлористого калия и доливают водой до метки. Измеряют атомную абсорбцию алюминия, как указано в п. 4.3.1.

4.3.3. Построение градуировочного графика

В щесть из семи мерных колб вместимостью по 100 см³ помещают 0,3; 1,0; 2,0; 3,0; 4,0 и 5,0 см³ стандартного раствора алюминия, что соответствует 0,3; 1,0; 2,0; 3,0; 4,0 и 5,0 мг алюминия. Во все колбы добавляют по 5 см³ соляной кислоты (1:1), по 2 см³ раствора хлористого калия, при массовой доле алюминия свыше 0,1 % добавляют алинвотные объемы растворов меди (если медь является основой сплава) или никеля (если никель является основой сплава) (см. табл. 3) и доливают водой до метки. Измеряют атомную абсорбцию алюминия, как указано в п. 4.3.1. По полученным данным строят градуировочный график.

4.4. Обработка результатов

 4.4.1. Массовую долю алюминия (X) в процентах вычисляют по формуле

$$X = \frac{C \cdot V}{m} \cdot 100$$

где C — концентрация алюминия, найденная по градуировочному графику, г/см³;

V — объем раствора, пробы, см³;

т — масса навески пробы, г.

4.4.2. Расхождения результатов трех параллельных определения d (показатель сходимости) и результатов двух анализов D (покабов Гост 6689.8-92, Никель, сплавы никелевые и медно-никелевые. Методы определения алюминия

затель воспроизводимости) не должны превышать значений до-

пускаемых расхождений, приведенных в табл. 1.

4.4.3. Контроль точности результатов анализа проводят по Государственным стандартным образцам (ГСО) или по отраслевым стандартным образцам (ОСО), или по стандартным образцам предприятия (СОП) никеля, никелевых и медно-никелевых сплавов, утвержденным по ГОСТ 8.315, или методом добавок или сопоставлением результатов, полученных титриметрическим или фотометрическим методами, в соответствии с ГОСТ 25086.

информационные данные

- РАЗРАБОТАН И ВНЕСЕН Министерством металлургии СССР РАЗРАБОТЧИКИ
 - В. Н. Федоров, Ю. М. Лейбов, Б. П. Краснов, А. Н. Боганова, Л. В. Морейская, И. А. Воробьева
- 2. УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Постановлением Комитета стандартизации и метрологии СССР от 18.02.92 № 167
- B3AMEH ΓΟCT 6689.8—80
- 4: ССЫЛОЧНЫЕ НОРМАТИВНО-ТЕХНИЧЕСКИЕ ДОКУ-

2.4.3; 3.4.3; 4.4.3 2.2; 3.2 3.2 2.2 Вводная часть 4.2
3.2 2.2 Вводная часть
2.2 Вводная часть
Вводная часть
4.2
2.2; 4.2
3.2
2.2; 3.2
2.2; 3.2; 4.2
2.2; 3.2; 4.2 2.2; 3.2; 4.2
3.2, 4.2
4.2
2.2; 3.2; 4.2
3.2
3.2
2.2; 3.2; 4.2
2.2
2.2
3.2
2.2; 3.2
Разд. I
2.2: 4.2
2.2
2.2; 4.2
2.2; 3.2; 4.2
2.2; 3.3
Вводная часть
3.2
Разд. 1; 2.4.3; 3.4.3; 4.4.3
3.2

Редактор И. В. Виноградская Технический редактор В. Н. Прусакова Корректор Т. А. Васильсва

«Сдано в наб. 29.06.92 Подп. в печ. 14.08.92 Усл. печ. л. 1,0, Усл. вр.-отт. 1,0. Уч.-изд. л. 1.02, Тираж 718 экэ.

Ордена «Знаж Почета» Издательство стандартов, 123557. Мосява. ГСЛ,

