

ГОСУДАРСТВЕННЫЙ СТАНДАРТ СОЮЗА ССР

никель, сплавы никелевые и медно-никелевые

методы определения свинца

ΓΟCT 6689.20-92

Издание официальное

ГОССТАНДАРТ РОССИИ

Москва

ГОСУДАРСТВЕННЫЙ СТАНДАРТ СОЮЗА ССР

НИКЕЛЬ, СПЛАВЫ НИКЕЛЕВЫЕ И МЕДНО-НИКЕЛЕВЫЕ

Методы определения свинца

ГОСТ 6689.20—92

Nickel, nickel and copper-nickel alloys, Methods for the determination of lead

OKCTV 1709

Дата введения 01.01.93

Настоящий стандарт устанавливает титриметрический комплексонометрический и электрогравиметрический методы определения свинца (при массовой доле свинца от 1,0 до 2,5%), полярографический метод определения свинца (при массовой доле свинца от 0,002 до 0,1%) и атомно-абсорбционный метод определения свинца (при массовой доле свинца от 0,002 до 0,02%; от 0,02 до 0,1% и от 1 до 2,5%) в никеле, никелевых и медно-никелевых сплавах по ГОСТ 492 и ГОСТ 19241:

1. ОБЩИЕ ТРЕБОВАНИЯ

Общие требования к методам анализа — по ГОСТ 25086 с дополнением по разд. 1 ГОСТ 6689.1.

2. ТИТРИМЕТРИЧЕСКИЯ КОМПЛЕКСОНОМЕТРИЧЕСКИЯ МЕТОД ОПРЕДЕЛЕНИЯ СВИНЦА

2.1. Сущность метода

Метод основан на комплексонометрическом титровании свинца при рН 5,5—6,0 в присутствии ксиленолового оранжевого в качестве индикатора после выделения сернокислого свинца и растворении последнего в растворе уксуснокислого аммония.

2.2. Реактивы и растворы Кислота азотная по ГОСТ 4461, разбавленная 1:1. Кислота серная по ГОСТ 4204, разбавленная 1:1 и 1:50.

Издание официальное

© Издательство стандартов, 1992

Настоящий стандарт не может быть полностью или частично воспроизведен, тиражирован и распространен без разрешения Госстандарта России

Аммоний уксусновислый по ГОСТ 3117, раствор 250 г/дм³. Калий железистосинеродистый по ГОСТ 4207, раствор 30 г/дм³.

Спирт этиловый ректификованный по ГОСТ 18300.

Свинец металлический марки СО по ГОСТ 3778.

Ксиленоловый оранжевый в смеси с хлористым натрием в соотношении I: 100, тщательно растертый.

Натрий хлористый по ГОСТ 4233.

Натрий сернистый по ГОСТ 596, раствор 20 г/дм³.

Этилендиамин-N,N,N,'N'-тетрауксусный кислоты динатриевая соль, 2-водная (трилон Б) по ГОСТ 10652, раствор 0,025 моль/дм³:

9,305 г трилона В растворяют в 500 см³ воды при нагревании, нереносят в мерную колбу вместимостью 1000 см³ и доливают до метки водой.

Установка массовой концентрации раствора трилона Б.

Навеску свинца массой 0,1 г помещают в стакан вместимостью 300 см³, добавляют 15 см³ азотной кислоты, накрывают часовым стеклом, стеклянной или пластиковой пластинкой и растворяют при нагревании. После растворения стекло или пластинку и стенки стакана ополаскивают водой, добавляют 40 см³ серной кислоты (1:1), упаривают до обильного выделения белого дыма серной кислоты, охлаждают, ополаскивают стенки стакана водой и вновь упаривают до белого дыма серной кислоты. Раствор охлаждают, приливают 150 см³ воды, нагревают до кипения, вновь охлаждают, добавляют 40 см³ этилового спирта и оставляют на 4 ч. Далее анализ ведут, как указано в п. 2.3.

Массовая концентрации раствора трилона Б, выраженная в граммах свинца на 1 см³ раствора, вычисляется по формуле

$$T = \frac{0.1}{V}$$

где V — объем раствора трилона Б, израсходованный на титрование, см 3 .

2.3. Проведение анализа

Навеску массой 1 г помещают в стакан вместимостью 300 см³, добавляют 15 см³ азотной кислоты, накрывают часовым стеклом, стеклянной или пластиковой пластинкой и растворяют при нагревании. После растворения сплава ополаскивают стекло или пластинку и стенки стакана водой, добавляют 40 см³ серной кислоты (1:1) и упаривают до обильного выделения белого дыма серной кислоты. Раствор охлаждают, стенки стакана ополаскивают водой и вновь упаривают до появления белого дыма серной кислоты. Раствор охлаждают, приливают 150 см³ воды, натревают до растворения солей и охлаждают. Добавляют 40 см³ этилового спирта и оставляют стоять на 4 ч.

Выделившийся осадок сернокислого свинца отфильтровывают: на плотный фильтр, стакан и осадок промывают серной кислотой (1:50) до полного удаления нонов меди в промывных водах (проба с железистосинеродистым калием), а затем 2-3 разаводой. Фильтр с осадком помещают в стакан, в котором велось осаждение, приливают 30 см³ раствора уксуснокислого аммония: и тщательно размельчают фильтр стеклянной палочкой. накрывают часовым стеклом, нагревают и выдерживают при температуре, близкой к температуре книения в течение 20 мин. Затем разбавляют водой до 150 см3 и еще нагревают в течение 10 мин.

Раствор охлаждают, добавляют на кончике шпателя смесь ксиленолового оранжевого с хлористым натрием и медленно: титруют раствором Б трилона до перехода фиолетовой окраски; в желтую.

2.4. Обработка результатов

2.4.1. Массовую долю свинца (X) в процентах вычисляют по формуле

$$X = \frac{V \cdot T \cdot 100}{m}$$
,

где V — объем раствора трилона Б, израсходованный на тит-

Т — массовая концентрация раствора трилона В по свин-Hy, Γ/CM^3 ;

т — масса навески, г.

2.4.2. Расхождения результатов трех параллельных определений d (показатель сходимости) и результатов двух анализов D(показатель воспроизводимости) не должны превышать значений

допускаемых расхождений, приведенных в табл. 1. Таблика І

Массовая доля свинця, %	Допускаемые расхождения, %	
	d	D
От 0,002 до 0,005 включ. Св. 0,005 » 0,010 » » 0,010 » 0,025 » » 0,025 » 0,05 » » 0,05 » 0,1 » От 1,0 » до 2,5 »	0,0008 0,001 0,002 0,004 0,005 0,08	0,001 0,001 0,003 0,006 0,007 0,1

2.4.3. Контроль точности результатов анализа проводят по Государственным стандартным образцам (ГСО) или по отраслевым стандартным образцам (ОСО), или по стандартным образцам предприятия (СОП) медно-никелевых сплавов, утвержденным по ГОСТ 8.315, или методом добавок, или сопоставлением результатов, полученных электрогравиметрическим или атомно-абсорбционным методами, в соответствии с ГОСТ 25086-

3. ЭЛЕКТРОГРАВИМЕТРИЧЕСКИЯ МЕТОД ОПРЕДЕЛЕНИЯ СВИНЦА

3.1. Сущность метода

Метод основан на выделении свинца электролитически в виде его двуокиси на аноде и взвешивании выделившегося осадка двуокиси свинца.

3.2. Аппаратура, реактивы, растворы

Электролизная установка постоянного тока.

Платиновые сетчатые электроды по ГОСТ 6563.

Кислота азотная по ГОСТ 4461, разбавленная 1 : 1.

Кислота сульфаминовая.

Спирт этиловый ректификованный технический по ГОСТ 18300.

3.3. Проведение анализа

Навеску массой 0,5 г помещают в стакан вместимостью 250 см³, добавляют 15 см³ азотной кислоты, накрывают часовым стеклом, стеклянной или пластиковой пластинкой и растворяют при нагревании. После растворения сплава часовое стекло или пластинку и стенки стакана ополаскивают водой, раствор нагревают до кинения, добавляют 0,5 г сульфаминовой кислоты, разбавляют водой до 150 см³.

В раствор погружают взвешенный анод и катол и проводят электролиз при силе тока 1,5—2 А при перемещивании раствора. Стакан с электролитом должен быть накрыт двумя половинками часового стекла, стеклянной или пластиковой пластинкой с прорезями для электродов и мешалки.

Через 30 мин от начала электролиза снимают стекло или пластинку, ополаскивают водой и продолжают электролиз еще в течение 15 мин. Если после этого на свежепогруженной в раствор части анода не выделяется осадок, электролиз считают законченным. Не выключая тока, быстро удаляют стакан с электролитом и промывают электроды, подставляя по очереди три стакана с дистиллированной водой. Выключают ток, снимают анод с осадком двуокиси свинца, погружают в стакан с 200 см³ этилового спирта и высущивают его при температуре 160—170°С до постоянной массы, охлаждают и взвешивают. Одна порция спирта может быть использована для промывки не более 20 электродов.

3.4.1. Массовую долю свинца (X) в процентах вычисляют по формуле

$$X = \frac{(m-m_1)\cdot 0.8661\cdot 100}{m_1}$$

где *m* — масса анода с выделившимся осадком двуокиен свинца, г;

 m_1 — масса анода, r;

0.8661 — коэффициент пересчета с двуокиси свинца на свинец; m_2 — масса навески, г.

- 3.4.2. Расхождення результатов трех параллельных определений d (показатель сходимости) и результатов двух анализов D (показатель воспроизводимости) не должны превышать значений допускаемых расхождений, приведенных в таблице.
- 3.4.3. Контроль точности результатов анализа проводят по Государственным стандартным образцам (ГСО) или по отраслевым стандартным образцам (ОСО), или по стандартным образцам предприятия (СОП) медно-никелевых сплавов, утвержденным по ГОСТ 8.315, или методом добавок, или сопоставлением результатов, полученных титриметрическим или атомно-абсорбционным методами, в соответствии с ГОСТ 25086.
- З.4.4. Электрогравиметрический метод применяют при разногласиях в оценке качества медно-никелевых сплавов.

4. ПОЛЯРОГРАФИЧЕСКИЯ МЕТОД ОПРЕДЕЛЕНИЯ СВИНЦА

4.1. Сущность метода

Метод основан на полярографическом определении свинца на фоне ортофосфорной кислоты при потенциале пика минус 0,47 В относительно насыщенного каломельного электрода после предварительного отделения свинца соосаждением с гидроксидом железа.

4.2. Аппаратура, реактивы, и растворы

Полярограф ППТ-I со всеми принадлежностями. Допускается применение полярографов других марок.

Кислота соляная по ГОСТ 3118 и разбавленная 1:1, и 1:3.

Кислота азотная по ГОСТ 4461, разбавленная 1:1 в 1:3.

Кислота хлорная.

Кислота ортофосфорная по ГОСТ 6552 и разбавленная 1:3, и раствор I моль/дм⁸.

Кислота бромистоводородная по ГОСТ 2062.

Бром по ГОСТ 4109.

Смесь для растворения, свежеприготовленная: 9 частей бромистоводородной кислоты смешивают с одной частью брома. Железо хлорное по ГОСТ 4147, раствор 15 г/дм^в в соляной кислоте (1:3).

Свинен по ГОСТ 3778 с массовой долей свинца не ниже 99,9%.

Стандартные растворы свинца

Раствор А: 1 г свинца растворяют при нагревании в 30 см³ азотной кислоты (1:1), удаляют окислы азота кипячением, охлаждают, приливают 50 см³ воды, переносят раствор в мерную колбу вместимостью 1000 см³ и доливают до метки водой.

1 см³ раствора А содержит 0,001 г свинца.

Раствор Б: 10 см³ раствора А переносят в мерную колбувместимостью 100 см³ и доливают до метки водой.

I см³ раствора Б содержит 0,0001 г свинца.

Ртуть Р0 по ГОСТ 4658, обезвоженная.

Азот газообразный по ГОСТ 9293.

4.3. Проведение анализа

4.3.1. Для сплавов с массовой долей олова свыше 0,05%

Навеску сплава массой 1 г помещают в стакан вместимостью 250 см³ и осторожно растворяют в 20 см³ смеси для растворения. При неволном растворении осторожно добавляют в стакан поканлям бром. Приливают к раствору 10 см3 хлорной кислоты и выпаривают до осветления раствора и появления густого белогодыма. Остаток охлаждают, разбавляют водой до 100 см³, добавляют 3—5 см³ раствора хлорного железа (при массовой доле железа в сплаве менее 0,5%) и раствор аммнака до образования темносинего комплекса меди и никеля и сверх того еще 5 см3 аммиака в избыток, выдерживают при 60-70°C в течение 30 мин и отфильтровывают осадок на фильтр средней плотности. Стакан и осадок на фильтре промывают 3-4 раза горячим раствором аммизка (1:100) и четыре раза теплой водой. Смывают осадок с фильтра струей воды в стакан, в котором проводили осаждение, растворяют осадок в 10 см³ горячей соляной кислоты (1:1) и промывают фильтр несколько раз горячей водой. Полученный раствор разбавляют до 125-150 см³ водой и повторяют переосажление. Затем осадок на фильтре растворяют в 5 см⁸ хлорной кислоты, разбавляют водой до 25 см3 и выпаривают до появления белого густого дыма. Охлаждают раствор, добавляют 14 см³ ортофосфорной кислоты (1:3), переносят раствор в мерную колбу вместимостью 50 см3 и доливают раствор до метки водой. Часть раствора переносят в полярографический сосуд, предварительнопромытый 1 моль/дм3 раствором ортофосфорной кислоты, деаэрируют раствор 5-7 мин током азота и полярографируют раствор в интервале от минус 0,25 до минус 0,70 В относительно насыщенного каломельного электрода. Одновременно с определением свинца проводят контрольный опыт со всеми реактивами и анализ пробы с добавкой стандартного раствора свинца, равной по-Б о 5 т гост 6689.20-92, Никель, сплавы никелевые и медно-никелевые. Методы определения свинца массе предполагаемому содержанию свинца, в навеске анализируемой пробе.

4.3.2. Для сплавов с массовой долей кремния свыше 0,05%

Навеску сплава массой 1 г помещают в платиновую чашку и растворяют в 10 см³ азотной кислоты (1:1) и і см³ фтористоводородной кислоты. Прибавляют 10 см³ хлорной кислоты и вынаривают до появления густого белого дыма хлорной кислоты. Остаток охлаждают, растворяют осадок в воде и переносят в стакан вместимостью 250 см³, доливают водой до объема 150 см³, добавляют 3 см³ раствора хлорного железа и далее поступают, как указано в п. 4.3.1.

4.3.3. Для сплавов с массовой долей олова и кремния менее 0,05%

Навеску сплава массой 1 г помещают в стакан вместимостью 250 см³ и растворяют в 10 см³ азотной кислоты (1:1). Удаляют окислы азота кипячением, разбавляют раствор водой до 125—150 см³, добавляют 3—5 см³ раствора хлорного железа и далее поступают, как указано в п. 4.3.1.

- 4.4. Обработка результатов
- 4.4.1. Массовую долю свинца (X) в процентах вычисляют по формуле

$$X = \frac{(h_1 - h_2) \cdot C \cdot V}{(H - h_1) \cdot m} \cdot 100,$$

где h_1 — высота пика свинца для раствора пробы, мл;

 h_2 — высота пика свинца для раствора контрольного опыта, мм;

Н — высота пика свинца для раствора пробы со стандартной добавкой, мм;

C — концентрация стандартного раствора свинца, г/см 3 ; V — объем добавки стандартного раствора, см 3 ;

т — масса навески, г.

- 4.4.2. Расхождения результатов трех параллельных определений d (показатель сходимости) и результатов двух анализов D (показатель воспроизводимости) не должны превышать значений допускаемых расхождений, приведенных в таблице.
- 4.4.3. Контроль точности результатов анализа проводят по Государственным стандартным образцам (ГСО) или по отраслевым стандартным образцам (ОСО), или по стандартным образцам предприятия (СОП) никеля, никелевых и медно-никелевых сплавов, утвержденных по ГОСТ 8.315, или методом добавок, или сопоставлением результатов, полученных атомно-абсорбционным методом, в соответствии с ГОСТ 25086.

5. АТОМНО-АБСОРБЦИОННЫЙ МЕТОД ОПРЕДЕЛЕНИЯ СВИНЦА

5.1. Сущность метода

Метод основан на измерении абсорбции света атомами свиниа, образующимися при введении анализируемого раствора в пламя ацетилен-воздух. При массовой доле свинца от 0,002 до 0,02% проводят предварительное выделение свинца соосаждением с гидроксидом железа.

5.2. Аппаратура, реактивы и растворы

Атомно-абсорбционный спектрометр с источником излучения для свинца.

Кислота азотная по ГОСТ 4461 и разбавленная 1:1.

Кислота соляная по ГОСТ 3118 и разбавленная 1:1, и растворы 1 и 2 моль/дм³.

Смесь кислот для растворения 1: смешивают один объем азотной кислоты с тремя объемами соляной кислоты.

Кислота фтористоводородная по ГОСТ 10484.

Кислота хлорная.

Кислота бромистоводородная по ГОСТ 2062.

Бром по ГОСТ 4109.

Смесь кислот для растворения 2, свежеприготовлениая: 9 частей бромистоводородной кислоты смешивают с одной частью брома.

Аммиак водный по ГОСТ 3760 и разбавленный 1:19.

Водорода пероксид по ГОСТ 10929.

Железо хлорное по ГОСТ 4147, раствор 15 г/дм³ в соляной кислоте (1:3).

Свинец по ГОСТ 3778.

Стандартные растворы свинца.

Раствор А: 0,1 г свинца растворяют при нагревании в 10 см³ азотной кислоты (1:1). Раствор переносят в мерную колбу вместимостью 100 см³ и доливают водой до метки.

1 см³ раствора А содержит 0,001 г свинца.

Раствор Б; 10 см³ раствора А переносят в мерную колбу вместимостью 100 см³ и долнвают водой до метки.

1 см³ раствора Б содержит 0,0001 г свинца.

5.3. Проведение анализа

5.3.1. Определение массовых долей свинца от 0,002 до 0,02%

5.3.1.1. Для сплавов с массовой долей олова и кремния до 0;05%

Навеску сплава массой 2 г помещают в стакан вместимостью 250 см² и растворяют при нагревании в 20 см³ азотной кислоты (1:1). Окислы азота удаляют кипячением и раствор разбавляют водой до объема 150 см³. Добавляют 5 см³ раствора хлорного железа (в сплавы, содержащие железо как легирующий компонент

не следует добавлять раствор хлорного железа), раствор нагревают до температуры 80—90°С и добавляют аммиак до полного перехода меди и никеля в растворимые аммиачные комплексы. Раствор с осадком гидроксидов оставляют стоять приблизительно 10 мин при температуре 60°С, а затем фильтруют на фильтр средней плотности и промывают горячим раствором аммиака (1:19) для удаления меди и никеля, а затем три раза горячей водой.

Осадок с развернутого фильтра смывают горячей водой в стакан, в котором проводили осаждение. Фильтр промывают 10 см³ горячего раствора соляной кислоты (1:1), а затем водой. Промытый фильтр отбрасывают, а раствор выпаривают до объема 5 см³. Раствор охлаждают, добавляют 10 см³ воды, переносят в мерную колбу вместимостью 25 см³ и доливают водой до метки.

Измеряют атомную абсорбцию свинца в пламени ацетиленвоздух при длине волны 283,3 нм параллельно с градуировочными растворами.

5.3.1.2. Для сплавов с массовой долей олова свыше 0,05%

Навеску сплава массой 2 г помещают в стакан вместимостью 250 см³, добавляют 25 см³ смеси для растворения (2) и осторожно нагревают до полного растворения. Затем добавляют 10 см³ хлорной кислоты и упаривают до объема 5 см³. Остаток охлаждают, добавляют 30 см³ воды и нагревают до растворения солей. Раствор разбавляют водой до объема 150 см³, добавляют 5 см³ раствора хлорного железа и далее анализ проводят, как указано в п. 5.3.1.1.

5.3.1.3. Для сплавов с массовой долей кремния свыше 0,05%

Навеску сплава массой 2 г помещают в платиновую чашку и растворяют при нагревании в 20 см³ азотной кислоты (1:1) и 2 см³ фтористоводородной кислоты. По охлаждении добавляют 10 см³ хлорной кислоты и нагревают до появления густых белых паров. Остаток охлаждают, добавляют 30 см³ воды и нагревают до растворения солей. Раствор переносят в стакан вместимостью 250 см³, разбавляют водой до объема 150 см³, добавляют 5 см³ раствора хлорного железа и далее анализ проводят, как указано в п. 5.3.1.1.

5.3.2. Определение массовых долей свинца от 0,02 до 0,1% и от 1 до 2%

Навеску сплава массой 1 г берут для определения массовых долей свинца от 0.02 до 0.1% и массой 0.1 г для определения массовых долей свинца от 1 до 2%.

5.3.2.1. Для сплавов с массовой долей олова ц кремния до 0,05%

Навеску сплава растворяют при нагревании в 10 см³ азотной кислоты (1:1). Раствор переносят в мерную колбу вместимостью 100 см³ и доливают водой до метки.

Измеряют атомную абсорбцию свинца в пламени ацетиленвоздух при длине волны 283,3 им параллельно с градуировочными растворами.

5.3.2.2. Для сплавов с массовой долей олова

свише 0,05%

Навеску сплава растворяют при нагревании в 10 см³ смеси кислот для растворения (1). Раствор переносят в мерную колбу вместимостью 100 см³ и доливают до метки 1 моль/дм³ раствором соляной кислоты. Измеряют атомную абсорбцию свинца, как указано в п. 5.3.2.1.

5.3.2.3. Для сплавов с массовой долей кремния

свыше 0.05%

Навеску сплава помещают в платиновую чашку и растворяют при нагревании в 10 см³ азотной кислоты (1:1) и 2 см³ фтористоводородной кислоты. После растворения приливают 10 см³ азотной кислоты (1:1) и раствор выпаривают досуха. Затем еще раз добавляют 10 см³ азотной кислоты (1:1) и раствор выпаривают досуха. Остаток растворяют в 10 см³ азотной кислоты (1:1), раствор переносят в мерную колбу вместимостью 100 см³ и доливают водой до метки. Измеряют атомную абсорбцию свинца, как указано в п. 5.3.2.1.

5.3.3. Построение градуировочного графика

В семь из восьми мерных колб вместимостью по 100 см³ помещают 1.0; 3.0; и 5.0 см³ стандартного раствора Б свинца; 1.0; 1.5; 2.0 и 2.5 см³ стандартного раствора А свинца, что соответствует 0.1; 0.3; 0.5; 1.0; 1.5; 3.0 и 2.5 мг свинца. Во все колбы приливают по 10 см³ 2 моль/дм³ раствора соляной кислоты и доливают волой до метки.

Измеряют атомную абсорбцию свинца, как указано в п. 5.3.1.1 и 5.3.2.1. По получениым данным строят градунровочный график

5.4. Обработка результатов

5.4.1. Массовую долю свинца (X) в процентах вычисляют по формуле

$$X = \frac{C \cdot V}{m} \cdot 100$$

где C — концентрация свинца, найденная по градупровочному графику, г/см⁸;

V — объем раствора пробы, см³;

т — масса навески пробы, г.

5:4.2. Расхождения результатов трех параллельных определений а (показатель сходимости) и результатов двух анализов робот 6689.20-92, Никель, сплавы никелевые и медно-никелевые. Методы определения свийца Nickel, nickel and copper-nickel alloys. Methods for the determination of lead

(показатель вос. ым став стве ным о(стандар yrse; силавов, юставлением виметрическим, ствии с ГОСТ 25

ИНФОРМАЦИОННЫЕ ДАННЫЕ

1. РАЗРАБОТАН И ВНЕСЕН Министерством металлургии СССР РАЗРАБОТЧИКИ

В. Н. Федоров, Ю. М. Лейбов, Б. Н. Краснов, А. Н. Боганова, Л. В. Морейская, И. А. Воробьева

- УТВЕРЖДЕН И ВВЕДЕН В ДЕИСТВИЕ Постановлением Комитета стандартизации и метрологии СССР от 18.02.92 № 167
- B3AMEH FOCT 6689,20—80
- 4. ССЫЛОЧНЫЕ НОРМАТИВНО-ТЕХНИЧЕСКИЕ ДОКУМЕН-ТЫ

Обозначение НТД, на который дана ссылка	Номер пункта, подпункта, разделя 2.4.3; 3.4.3; 4.4.3; 5.4.3	
FOCT 831591		
FOCT 492-73	Вводная часть	
FOCT 596-89	2.2	
FOCT 2062-77	4.2: 5.2	
FOCT 311778	2.2	
FOCT 3118—77	4.2; 5.2	
FOCT 3760—79	4.2; 5.2	
FOCT 3778—77	2.2; 4.2; 5.2	
FOCT 410978	4.2; 5.2	
FOCT 4147—74	4.2; 5.2	
FOCT 420477	2.2	
FOCT 4207—75	2.2	
FOCT 423377	2.2	
FOCT 446177	2.2; 3.2; 4.2; 5.2	
ГОСТ 4658—73	4.2	
FOCT 6552—80	4.2 3.2	
FOCT 6563—75 FOCT 6689.1—92		
ΓOCT 929374	Разд. I 4.2	
FOCT 10484—78	5.2	
FOCT 1065273	2.2	
FOCT 1092976	5.2	
FOCT 1830087	2.2, 3.2	
ΓOCT 1924180	Виодная часть	
FOCT 25/18687	Разд. 1: 2.43:	
COI ENNO	3.4.3; 4:4.3; 5.4.3	

Славо в наб. 29. Тир. 677 экз.

Ордева «Знак Поч Тат

