Миниатюрные плавкие предохранители

ТРУБЧАТЫЕ ПЛАВКИЕ ВСТАВКИ

Издание официальное

B3 8-2003

ИПК ИЗДАТЕЛЬСТВО СТАНДАРТОВ Москва УДК 621.316.923:006.354 Группа Э29

ГОСУДАРСТВЕННЫЙ СТАНДАРТ РОССИЙСКОЙ ФЕДЕРАЦИИ

Миниатюрные плавкие предохранители

ТРУБЧАТЫЕ ПЛАВКИЕ ВСТАВКИ

Miniature fuses. Cartridge fuse-links

FOCT P 50538-93 (M9K 127-2-89)

MKC 29.120.50 OKΠ 63 8140

Дата введения 01.01.94*

Раздел 1. Дополнительные требования и испытательная аппаратура

Настоящий стандарт устанавливает специальные требования к трубчатым плавким вставкам миниатюрных плавких предохранителей размеров 5×20 мм и 6,3×32 мм, применяемых для защиты электрических приборов, электронной аппаратуры и ее компонентов, обычно предназначенных для эксплуатации в помещениях.

Требования и сведения по испытаниям, приведенные в настоящем стандарте, являются дополнением к указанным в ГОСТ Р 50537.

Требования к миниатюрным плавким вставкам с проволочными выводами приведены в приложении A.

(Измененная редакция, Изм. № 2).

1 Общие положения

1.1 Связь с другими стандартами

Ссылочные документы являются составной частью настоящего стандарта в части, соответствующей области их применения. Если для какого-либо ссылочного документа не указана дата издания, то следует использовать последнее издание.

ГОСТ 8032-84 Предпочтительные числа и ряды предпочтительных чисел

ГОСТ 26246.5—89 (МЭК 249-2-5—87) Материал электроизоляционный фольгированный нормированной горючести для печатных плат на основе стеклоткани, пропитанной эпоксидным связующим. Технические условия

ГОСТ 28211—89 (МЭК 68-2-20—79) Основные методы испытаний на воздействие внешних факторов, Часть 2. Испытания. Испытания Т: Пайка

ГОСТ Р 50537—93 (МЭК 127-1—88) Миниатюрные плавкие предохранители. Терминология для миниатюрных плавких предохранителей и общие требования к миниатюрным плавким вставкам

(Измененная редакция, Изм. № 2). 1.2 Единицы физических величин и их условные обозначения

Единицы физических величин, графические и буквенные их обозначения должны, по возможности, соответствовать ГОСТ 2.710, ГОСТ 2.721, ГОСТ 8.417.

1.3 Термины

Термины и пояснения к ним приведены в ГОСТ Р 50537.

Издание официальное

© Издательство стандартов, 1993 © ИПК Издательство стандартов, 2004

Настоящий стандарт не может быть полностью или частично воспроизведен, тиражирован и распространен на территории Российской Федерации без разрешения Госстандарта России

ì

Порядок введения стандарта в действие — в соответствии с приложением А.

1.4 Общие требования

Требования настоящего стандарта являются дополнением к приведенным в ГОСТ Р 50537.

1.5 Стандартные параметры

Стандартные параметры миниатюрных плавких предохранителей приведены в ГОСТ Р 50537.

1.6 Маркировка

В дополнение к требованиям ГОСТ Р 50537 в маркировке каждой плавкой вставки должно быть проставлено условное обозначение номинальной отключающей способности, которое проставляют между обозначениями номинального тока и номинального напряжения.

Применяют следующие условные обозначения номинальной отключающей способности:

- Н высокая отключающая способность;
- L низкая отключающая способность;
- Е повышенная отключающая способность.

Примеры маркировки:

T	. 3	1	5	L	2	5	0	V
		F	4	Н	2	5	0	V
Т	3	1	5	E	2	5	0	V

(Измененная редакция, Изм. № 1).

2 Общие замечания по испытаниям

2.1 Типовые испытания

- В дополнение к требованиям ГОСТ Р 50537 должно соблюдаться следующее.
- Испытания должны проводиться на 48 плавких вставках, 12 из которых являются запасными на случай повторного проведения некоторых испытаний.
- б) Программа испытаний трубчатых плавких вставок для миниатюрных плавких предохранителей приведена в таблице 1.

Таблица 1 — ПРОГРАММА ИСПЫТАНИЙ

Номер				Номер плавкой вставки													
под- пункта	Наименован испытания	16	7, 9, 11	8, 10, 13	12, 14, 15	.16, 17, 18	.19, 20; 21	22, 24, 26	23, 25, 27	28, 29, 36	31, 32, 33	34, 36, 38	35, 37, 39	40, 41, 42	43, 44, 45	46, 47, 48	
6.41)	Испытание на износо- устойчивость		×			.:	13,										
6.2.21)	Испытание при вышенной темпера	і по- туре2)	×														
6.21)	Амперсекун-	101		×													
	дные характе- ристики	4,0I							×								
	2												×				
		2,0 или 2,1 <i>I</i>														×	

Окончание таблины 1

Нояер			Номер плавкой вставки													
под- пункта	наименование	16	7, 9. 11	8, 10, 13	12, 14, 15	16, 17; 18	19, 20, 21	22, 24, 26	23, 25, 27	28, 29, 30	31, 32, 33	34, 36, 38	35, 37, 39	40, 41, 42	43, 44, 45	.46, 47, 48
6.311	Испытание на отклю- чающую способность Номинальная отклю- чающая способность Ток, превышающий но- минальный в пять раз				×		×									
	Ток, превышающий но- минальный в 10 раз									×						
	Ток, превышающий но- минальный в 50 раз										×					
	Ток, превышающий но- минальный в 250 раз													×		
3.23+	Выводы (испытание на- конечников)		×					×				ж.			×	
5.51)	Паяные соединения	×	×			×		×				×			×	
3.3.21)	Разборчивость и несмы- ваемость маркировки		×					×				×			×	

Подпункты содержат методику испытания и технические требования в соответствии с ГОСТ Р 50537.

2.2 Испытательные цоколи

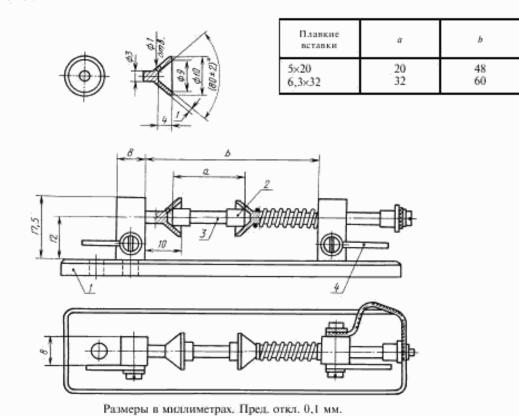
При проведении испытаний, требующих использования цоколей для установки плавких вставок, должны использоваться цоколи, приведенные на рисунках 1, 2 или 3.

Контактное сопротивление между каждым контактом и латунной деталью с серебряным покрытием, имеющей те же номинальные размеры и форму, что и испытательная плавкая вставка, не должна превышать 3 мОм, и должно измеряться при следующих условиях:

- а) для предотвращения пробоя тонких изоляционных пленок на контактах ЭДС цепи не должна превышать 20 мВ постоянного или переменного тока (амплитудное значение);
 - b) для предотвращения перегрева контактов протекающий ток не должен превышать 1 А.

Металлические детали цоколя предохранителя, за исключением пружины и соединений, должны изготовляться из латуни. Содержание меди в латунных деталях цоколя предохранителя и калибра для измерения контактного сопротивления должно составлять 58 %—70 %. Контакты должны иметь серебряное покрытие.

Для плавких вставок, рассчитанных на номинальные токи до 10 А включ., должен использоваться цоколь предохранителя, приведенный на рисунке 1. Сила контактного давления должна составлять 4—6 Н. Гибкий проводник и соединительные провода должны изготовляться из меди и иметь площадь поперечного сечения 1 мм²: длина каждого соединительного провода должна составлять ≈ 500 мм.

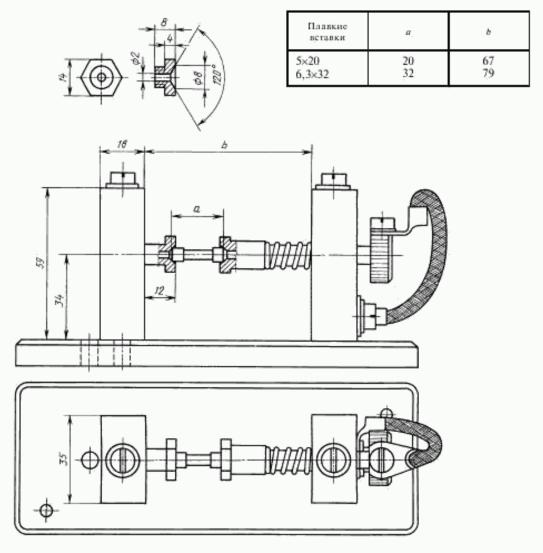

Для плавких вставок, рассчитанных на номинальные токи св. 10 А, должен использоваться цоколь предохранителя, показанный на рисунке 2. Сила контактного давления должна составлять 8—12 Н. Гибкий проводник и соединительные провода должны изготовляться из меди и иметь площадь поперечного сечения 6 мм²; длина каждого соединительного провода должна составлять ≈ 500 мм.

При проведении испытаний на отключающую способность должны использоваться цоколи предохранителей, указанные на рисунке 3 и имеющие те же контактное давление и площадь поперечного сечения проводника, что и цоколь, приведенный на рисунке 2.

Подпункты относятся к настоящему стандарту.

⁵⁾ Испытание при повышенной температуре проводят только в случае, предусмотренном в соответствующих ТУ на изделия конкретных типов.

Примечание — Знак « означает, что данную плавкую вставку подвергают испытаниям.



I- цоколь из изоляционного материада с низкой теплопроводностью; 2- контакт (наконечник) планкой вставки; 3- плавкая вставка; 4- соединительный провод

Рисунок 1 — Цоколь для испытания плавких вставок размером 5×20 мм и $6,3\times32$ мм. Номинальные токи до 10 A включ. (см. 4.3.1)

Рисунок 2 — Цоколь для испытания плавких вставок размером 6,3×32 мм. Номинальные токи св. 10 A (см. 4.3.1)

Размеры в миллиметрах. Пред. откл. 0,1 мм.

Рисунок 3 — Цоколь для испытаний на отключающую способность (см. 4.3.1)

3 Размеры и конструкция

В дополнение к требованиям ГОСТ Р 50537 должны соблюдаться следующие требования и проводиться испытания, указанные в последующих пунктах настоящего стандарта.

3.1 Конструкция

Если конструкция предусматривает использование «непрозрачной» плавкой вставки, то допускается применять прозрачную трубку, но с непрозрачным наполнителем.

Соответствие данному требованию проверяют внешним осмотром.

В основе настоящего стандарта лежит допущение, что корпуса плавких вставок изготовляют из стекла, керамики или аналогичного негорючего материала.

Использование других материалов может потребовать проведения дополнительных испытаний.

3.2 Выволы

Плавкие вставки на каждом конце должны иметь металлический наконечник цилиндрической формы.

Торцы цилиндрических наконечников должны быть практически плоскими и перпендикулярными относительно оси.

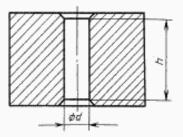


Рисунок 4 — Калибр для проверки на соосность (см. 5.4)

Наконечники должны быть прочно закреплены так, чтобы их нельзя было снять, не повредив при этом плавкую вставку.

Соответствие данному требованию проверяют внешним осмотром и проведением следующего испытания:

Образцы на 24 ч погружают в воду температурой 15 °C—35 °C. После изъятия из воды к каждому наконечнику в течение 1 мин прикладывают осевое усилие по направлению от наконечника, равномерно увеличиваемое до 5 Н.

Прочность крепления наконечников не должна нарушаться.

На рисунке 7 показано испытательное приспособление, которое следует использовать для проверки прочности крепления наконечников в спорных случаях. Использование этого приспособления позво-

ляет проводить испытание без повреждения наконечников.

3.3 Расположение выволов

Должна обеспечиваться необходимая соосность наконечников и корпуса плавкой вставки. Соответствие данному требованию проверяют при помощи калибра, показанного на рисунке 4. Плавкая вставка должна целиком проходить через калибр под действием собственного веса.

4 Требования к электрическим параметрам

В дополнение к требованиям ГОСТ Р 50537 должны соблюдаться следующие требования и проводиться следующие испытания.

4.1 Отключающая способность

Данное испытание должно проводиться на переменном токе.

Типовая испытательная схема для испытания на высокую отключающую способность приведена на рисунке 5, а для испытания на низкую отключающую способность — на рисунке 6. Для данного испытания должен использоваться испытательный цоколь, приведенный на рисунке 3.

Коэффициент мощности испытуемой цепи при высокой отключающей способности должен быть 0,7—0,8. При испытании в условиях меньших ожидаемых токов индуктивность цепи должна оставаться постоянной, а ток должен регулироваться только изменением сопротивления.

В дополнение к критериям отказа, установленным ГОСТ Р 50537, при проведении каждого испытания, плавкая вставка должна надежно срабатывать без последующих явлений:

- сплавления контактов;
- неразборчивости маркировки после испытания;
- образования на наружных поверхностях наконечников отверстий, видимых невооруженным глазом

Допускаются следующие дефекты:

- появление черных пятен на наконечниках:
- незначительная деформация наконечников;
- появление трещин на плавкой вставке.

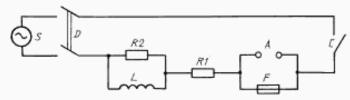
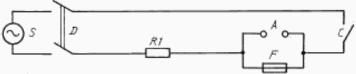
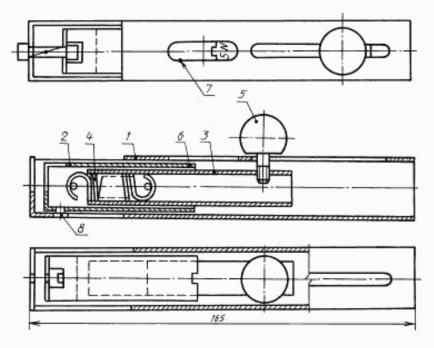


Рисунок 5 — Типовая схема для испытаний на отключающую способность плавких вставок с высокой отключающей способностью (см. 6.3)




Рисунок 6 — Типовая схема для испытаний на отключающую способность плавких вставок с низкой отключающей способностью (см. 6.3)

G D 5 1

6

Обозначения, применяемые на рисунках 5 и б

A- съемная плавкая вставка, используемая для калибровки; C- контактор, замыкающий цепь; D- выключатель для отключения источника питания; F- испытуемый предохранитель; S- источник питания с полным сопротивлением менее 10~% от общего полного сопротивления цепи; L- катушка индуктивности без сердечника с индуктивностью $0.30~\text{м}\Gamma\pm3~\%$; RI- последовательно включенный резистор для установки необходимого ожидаемого тока; R2- включенный параллельно демпфирующий резистор сопротивлением $40~\text{Om}\pm10~\%$.

Размеры в миллиметрах.

Рисунок 7 — Испытательное приспособление для приложения осевого усилия по направлению от наконечника

Приспособление состоит из трех трубок, входящих одна в другую.

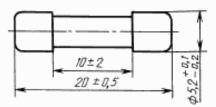
Наружная трубка I в верхней части имеет прорезь и зажим, в который вставляют один конец испытуемого образца.

Средняя трубка 2 в своей верхней части имеет такую же прорезь и зажим, в который вставляют другой конец образца.

Внутреннюю трубку 3 соединяют с трубкой 2 с помощью пружины 4.

При отведении трубки 3 с помощью рукоятки 5 растягивается пружина 4 и, таким образом, равномерно увеличиваемое осевое усилие прикладывается к трубке 2 и испытуемому образцу.

Различную длину наконечника и всей вставки можно компенсировать перемещением трубки 2. Ее нижний конец 6 оказывается расположенным против смотрового окна 7 и служит в качестве контрольной отметки. Другая отметка (пунктирная линия), обозначенная «5N», нанесена на трубку 3. Совмещение обеих отметок достигается путем соответствующего перемещения рукоятки 5, которая в таком положении жестко фиксируется завинчиванием.


С помощью винта 8 обеспечивается правильное взаимное расположение трубок 1 и 2.

Испытательное приспособление должно использоваться и калиброваться в вертикальном положении, причем испытуемый предохранитель находится в верхней части приспособления.

РАЗДЕЛ ІІ. ТУ НА ИЗДЕЛИЯ КОНКРЕТНЫХ ТИПОВ

Плавкие вставки размером 5×20 мм Быстродействующие Высокая отключающая способность	ТУ на изделия конкретных типов 1
--	----------------------------------

Размеры в миллиметрах.

Соосность. Калибр имеет следующие размеры: h = 30 мм; $d = (5,38 \pm 0,01)$ мм (см. 5.4). Конструкция. Плавкая вставка должна быть непрозрачной.

Номинальный ток ¹¹	Номинальное напряжение, В	Максимальное падение напряжения, мВ	Максимальная установившаяся мощность рассеяния, Вт ²⁾
50 MA 63 MA 80 MA 100 MA 125 MA 160 MA 200 MA		10000 8800 7600 7000 5000 4300 3500	i,6
250 MA 315 MA 400 MA 500 MA 630 MA 800 MA 1,00 A	250	2800 2500 2000 1800 1500 1200 1000	2,5
1,25 A 1,60 A 2,00 A 2,50 A 3,15 A 4,00 A 5,00 A 6,30 A		800 600 500 400 350 300 250 200	4,0

Промежуточные значения следует выбирать из ряда R20 в соответствии с ГОСТ 8032.

Маркировка

На плавкой вставке должны быть проставлены следующие данные:

- а) номинальный ток;
- b) номинальное напряжение;
- с) марка завода-изготовителя или товарный знак;
- d) условное обозначение быстродействующей плавкой вставки «F»;
- е) условное обозначение отключающей способности «Н».

Амперсекундная характеристика

Время до образования дуги должно быть в следующих пределах:

8

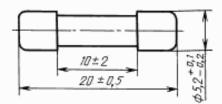
 $^{^{2)}}$ Значения, измеренные после пропускания через плавкую вставку тока 1,5 I_0 в течение 1 ч.

Номинальный ток	2,10I _H	2,7	5 <i>I</i> _N	4,0	$0I_{ii}$	10,00 <i>I</i> _H			
Время до обра- зования дуги	Не более 30 мин	Не менее Не бо- 10 мс лее 2 с ¹³		Не ме- нее 3 мс	Не бо- лее 300 мс	Не более 20 мс			
1) 3 с при номинальных токах 4,5 и 6,3 А.									

Отключающая способность

Номинальная отключающая способность 1500 А. Испытания проводят на переменном токе с использованием схемы для испытания на высокую отключающую способность, приведенной на рисунке 5.

Испытания на износоустойчивость


Проводят 100 циклов при токе, в 1,2 раза превышающем номинальный, в соответствии с 6.4а ГОСТ Р 50537. Затем в соответствии с 6.46 ГОСТ Р 50537 через плавкую вставку в течение 1 ч пропускают ток, превышающий номинальный в 1,5 раза.

ГОСТ P 50538-93

Плавкие вставки размером 5×20 мм Быстродействующие Низкая отключающая способность	ТУ на изделия конкретных типов 2
---	----------------------------------

Плавкая вставка данного типа рекомендуется для защиты цепей в аппаратуре дальней связи или аналогичных цепей с ограниченным током короткого замыкания.

Размеры в миллиметрах.

Соосность. Калибр имеет следующие размеры: h = 30 мм; $d = (5.38 \pm 0.01)$ мм (см. 5.4). Конструкция. Плавкая вставка должна быть прозрачной,

Номинальный ток ¹⁾	Номинальное напряжение, В	Максимальное падение илприжения, мВ	Максимальная установившаяся мощность рассеяния, Вт ²⁾
32 MA 40 MA 50 MA 63 MA 80 MA 100 MA 125 MA 160 MA 200 MA 250 MA 315 MA 400 MA 500 MA 630 MA 800 MA 1,00 A 1,25 A 1,60 A 2,50 A	250	10000 8000 7000 5000 4000 3500 2000 2000 1700 1400 1300 1200 1000 650 240 200 200 190 170	1,6
3,15 A 4,00 A 5,00 A 6,30 A		150 130 130 130	2,5

Маркировка

На плавкой вставке должны быть проставлены следующие маркировочные данные:

- а) номинальный ток;
- b) номинальное напряжение;
- с) марка завода-изготовителя или товарный знак;

 $^{^{(1)}}$ Промежуточные значения следует выбирать из ряда R20 в соответствии с ГОСТ 8032. Значения, измеренные после пропускания через плавкую вставку тока 1,5 $I_{\rm R}$ в течение 1 ч.

- ф) условное обозначение быстродействующей плавкой вставки «F».
- е) условное обозначение отключающей способности «L».

Амперсекундная характеристика

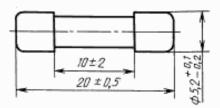
Время до образования дуги должно быть в следующих пределах:

Номинальный 2,10 <i>I</i> _н		2,7	5 I ₁₁	4,0	$0I_{\omega}$	10,001,
100	не более		не более	не менее	не более	не более
От 32 до 100 мА включ.	. 30 мин	10 мс	500 мс	3 мс	100 мс	20 мс
Св. 100 мА до 6,30 А		50 sic	2 c	10 мс	300 мс	

Отключающая способность

Номинальная отключающая способность 35 A или 10 $I_{\rm R}$ (выбирают большее значение). Испытание проводят на переменном токе с использованием схемы для испытания на низкую отключающую способность, приведенной на рисунке 6.

 Π р и м е ч а и и е. Необходимо следить за тем, чтобы ожидаемые токи короткого замыкания находились в заданных пределах.


Испытания на износоустойчивость

Проводят 100 циклов при токе, в 1,2 раза превышающем номинальный, в соответствии с 6.4а ГОСТ Р 50537. Затем в соответствии с 6.4b ГОСТ Р 50537 через плавкую вставку в течение 1 ч пропускают ток, превышающий номинальный в 1,5 раза.

Плавкие вставки размером 5×20 мм Замедленные (устойчивые к перегрузкам) Низкая отключающая способность	ТУ на изделия конкретных типов 3
---	----------------------------------

Плавкая вставка данного типа рекомендуется для защиты цепей в аппаратуре дальней связи или аналогичных цепей с ограниченным током короткого замыкания.

Размеры в миллиметрах.

Соосность. Калибр имеет следующие размеры: h = 30 мм; $d = (5.38 \pm 0.01)$ мм (см. 4.4). Конструкция. Плавкая вставка должна быть прозрачной.

Номинальный ток ¹¹	Номинальное напряжение, В	Максимальное падение на- пряжения, мВ	Максимальная установившияся мощность рассеяний, Вт ²⁾
32 MA 40 MA 50 MA 63 MA 80 MA 125 MA 160 MA 200 MA 250 MA 315 MA 400 MA 500 MA 630 MA 800 MA 1,00 A 1,25 A 1,60 A 2,50 A 3,15 A 4,00 A 5,00 A	250	5000 4000 3500 3000 3000 2000 1900 1500 1300 1100 900 300 250 150 150 150 150 150 100 100 100	1,6

 $^{^{1)}}$ Промежуточные значения еледует выбирать из ряда R20 в соответствии с ГОСТ 8032. Значение, измеренное после пропускания через плавкую вставку тока 1,5 $I_{\rm H}$ в течение 1 ч.

Амперсекундная характеристика

Время до образования дуги должно быть в следующих пределах:

Номиналь-	3,10 <i>I</i> _H	2,75I _n		4,0	ĐŽ,	10,00I _{3i}		
ный ток	не более	не-менее	не более	не менее	не более	не менее	не более	
От 32 до 100 мА включ.	2 мин	200 мс	10 c	40 мс	3 с	10 мс	300 мс	
Св. 100 мА до 6,30 А		600 мс		150 мс		20 мс		

Испытания при температуре (70±2) °С

В течение 1 ч через плавкие вставки должен пропускаться ток 1,1 $I_{\rm s}$. Плавкие вставки не должны срабатывать.

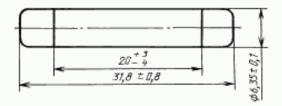
Отключающая способность

Номинальная отключающая способность 35 A или $10I_{\rm H}$ (выбирают большее значение). Испытания проводят на переменном токе с использованием схемы для испытаний на низкую отключающую способность, приведенной на рисунке 6.

 Π р и м е ч а н и е — Необходимость следить за тем, чтобы ожидаемые токи короткого замыкания находились в заданных пределах.

Испытание на износоустойчивость

Проводят 100 циклов при токе, в 1,2 раза превышающем номинальный, в соответствии с 6.4а ГОСТ Р 50537. Затем в соответствии с 6.4b ГОСТ Р 50537 через плавкую вставку в течение 1 ч пропускают ток, превышающий номинальный в 1,5 раза.



FOCT P 50538-93

Плавкие вставки размером 6,3×32 м Быстродействующие Низкая отключающая способность	ТУ на изделия конкретных типов 4
--	----------------------------------

Плавкая вставка данного типа рекомендуется для защиты цепей в аппаратуре дальней связи или аналогичных цепей с ограниченным током короткого замыкания.

П р и м е ч а н и е — Данные ТУ на изделия конкретных типов подготовлены, исходя из существующей в ряде стран потребности в плавких вставках данного типа. В будущем возможно понадобится внести изменения в данные ТУ, чтобы ими могли руководствоваться в большем числе стран.

Размеры в миллиметрах.

Соосность. Калибр имеет следующие размеры: h = 38 мм; $d = (6,65 \pm 0,01)$ мм (см. 5.4). Конструкция. Плавкая вставка должна быть прозрачной.

Номинальный ток	Номинальное напряжение, В	Максимальное падение напряжения, мВ	Максимальная установившаяся мощность рассеяния, Вт ¹³
50 MA 63 MA 80 MA 100 MA 125 MA 160 MA 200 MA 250 MA 315 MA 400 MA 500 MA 630 MA 800 MA	250	10000 8000 7000 6000 5500 5000 4000 3500 3000 2500 2000 1800 1500 500	1,6
1,25 A 1,60 A 2,00 A 2,50 A	150	400 400 300 250	2,5
3,15 A 4,00 A 5,00 A 6,30 A 8,00 A 10,00 A	150 150 60 60 60 60	250 250 200 200 200 200 200	4,0
¹⁾ Значения, измерения	не после пропускания через	плавкую вставку тока $1,5I_{\rm H}$	в течение 1 ч.

Маркировка

На плавкой вставке должны быть проставлены следующие данные:

- а) номинальный ток;
- b) номинальное напряжение;
- с) марка завода-изготовителя или товарный знак;

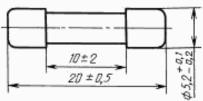
- ф) условное обозначение быстродействующей плавкой вставки «F»;
- е) условное обозначение отключающей способности «L».

Амперсекундная характеристика

Время до образования дуги должно быть в следующих пределах:

Номинальный ток	2,00/,	2,7	5 I _m	: 4,0	10,007,	
TIOMRIALISME TOX	не более	не менее	не более	не менее	не более	не более
От 50 до 100 мА включ.	20 c	2 мс	200 мс	1 мс	30 мс	5 мс
Св. 100 мА до 10,00 А	2.7 6	20 мс	1500 мс	8 MC	400 мс	80 мс

Отключающая способность


Номинальная отключающая способность 35 A или 10 I_н (выбирают большее значение). Испытание проводят на переменном токе с использованием схемы для испытаний на низкую отключающую способность, приведенной на рисунке 6.

Испытание на износоустойчивость

Проводят 100 циклов при токе, в 1,05 раза превышающем номинальный, в соответствии с 6.4а ГОСТ Р 50537. Затем в соответствии с 6.4b ГОСТ Р 50537 через плавкую вставку в течение 1 ч пропускают ток, превышающий номинальный в 1,5 раза.

FOCT P 50538-93

Размеры в миллиметрах.

С о о с н о с т в. Калибр имеет следующие размеры: h = 30 мм; $d = (5,38\pm0,01)$ мм (см. 5.4). Конструкция. Плавкая вставка должна быть непрозрачной. Номинальное напряжение 250 В.

Номиналь- вый ток ¹⁾ , А	Максимальное падение напряжения, мВ	Максимальная уста- новившаяся мощ- ность рассеяния, Вт ²⁾	. Номинальный ток ¹⁾ , А.	Максимальное падение напря- жения, мВ	Максимальная уста- новившаяся мощ- ность рассеяния, Вт ²⁾
1,00 1,25 1,60 2,00 2,50	250 250 200 190 180	2,5	3,15 4,00 5,00 6,30	140 100 100 100	4,0

Промежуточные значения следует выбирать из ряда R20 в соответствии с ГОСТ 8032.

Маркировка

На плавкой вставке должны быть проставлены следующие данные:

- а) номинальный ток;
- b) номинальное напряжение;
- с) марка завода-изготовителя или товарный знак;
- d) условное обозначение замедленной плавкой вставки «Т»;
- е) условное обозначение отключающей способности «Н».

Амперсекундная характеристика

Время до образования дуги должно быть в следующих пределах:

Цоминаль-	·2,10I _H	2,7	5 I _n	4,0	0.I _H	10,0	0 I ₄ .
ный ток.	не более	не менее	не более	не менее	не более	не менес	не более
От 1,00 до 3,15 А включ. Св. 3,15 до 6,30 А	30 мин	1 c	80 c	95 c 150 c	5-c	10 мс -20 мс	100 мс

Испытание при температуре (70±2) °C

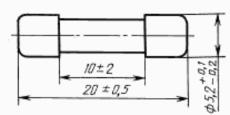
В течение 1 ч через плавкие вставки должен пропускаться ток $1,1I_{\rm s}$. Плавкие вставки не должны срабатывать.

Отключающая способность

Номинальная отключающая способность 1500 А. Испытание проводят на переменном токе с использованием схемы для испытаний на высокую отключающую способность, приведенной на рисунке 5.

Испытание на износоустойчивость

Проводят 100 циклов при токе, в 1,2 раза превышающем номинальный, в соответствии с 6.4а ГОСТ Р 50537. Затем в соответствии с 6.4b ГОСТ Р 50537 через плавкую вставку пропускают ток, превышающий номинальный в 1,5 раза.



 $^{^{2)}}$ Значения, измеренные после пропускания через плавкую вставку тока 1,5 $I_{\rm H}$ в течение 1 ч.

Плавкие вставки размером 5×20 мм Замедленные (устойчивые к перегрузкам) Повышенная отключающая способность	ТУ на изделия конкретных типов 6
---	----------------------------------

Плавкая вставка данного типа рекомендуется для защиты электрических схем аппаратуры, такой как телевизоры, имеющей предполагаемый ток короткого замыкания от 35 до 150 A.

Размеры в миллиметрах.

Соосность. Калибр имеет следующие размеры: h = 30 мм; $d = (5.38 \pm 0.01)$ мм (см. 5.4). Конструкция. Плавкая вставка может быть прозрачной или непрозрачной.

Номи- нальный ток ¹⁾	Номинальное напряжение, В	Максимальное падение напряжения, мВ	Максимальная, установившаяся мощность рассеяния, Вт ²⁾	Номи- нальный ток ¹⁾	Номиналь- ное напря- жение, В	Максимальное падение напряжения, мВ	Максимальная установившаяся мощность рассеяния, Вт ²⁾
32 MA 40 MA 50 MA 63 MA 80 MA 100 MA 125 MA 200 MA 250 MA 315 MA 400 MA	250	5000 4000 3500 3000 3000 2500 2000 1900 1500 1300 1100	1,6	500 MA 630 MA 800 MA 1,00 A 1,25 A 1,60 A 2,00 A 2,50 A 3,15 A 4,00 A 5,00 A 6,30 A	250	900 300 200 150 150 150 150 120 100 100	1,6

Промежуточные значения следует выбирать из ряда R20 в соответствии с ГОСТ 8032.

Маркировка

На плавкой вставке должны быть проставлены следующие маркировочные данные:

- а) номинальный ток;
- b) номинальное напряжение;
- с) марка завода-изготовителя или товарный знак.
- d) условное обозначение замедленной плавкой вставки «Т».
- е) условное обозначение отключающей способности «Е».

Амперсекундная характеристика

Время до образования дуги должно быть в следующих пределах:

Номиналь-	2,10 I _m ,	$2,75I_{\mu}$	4,00 I _H		10,00 <i>I</i> _H		
ный ток	не более	не менес	не более	не менес	не более	не менее	не более
От 32 до 100 мА включ. Св. 100 мА до 6,30 А	2 мин	200 мс 600 мс	10 с	40 мс 150 мс	3 0	10 мс 20 мс	300 мс

 $^{^{2)}}$ Значение, измеренное после пропускания через плавкую вставку тока 1,5 $I_{\rm H}$ в течение 1 ч.

ГОСТ P 50538-93

Испытание при температуре (70±2) °С

Ток 1,1 $I_{\rm H}$ следует пропускать через плавкие вставки в течение 1 ч; они не должны срабатывать. О т к л ю ч а ю щ а я $\,$ с п о с о б н о с т ь

Номинальная отключающая способность 150 А. Испытание проводят на переменном токе с использованием схемы для испытания на низкую отключающую способность, приведенной на рисунке 6.

Испытание на износоустойчивость

Проводят 100 циклов при токе, в 1,2 раза превышающем номинальный, в соответствии с 6.4а ГОСТ Р 50537. Затем в соответствии с 6.4b ГОСТ Р 50537 через плавкую вставку в течение 1 ч пропускают ток, превышающий номинальный в 1,5 раза.

(Измененная редакция, Изм. № 1).

ПРИЛОЖЕНИЕ А (обязательное)

Миниатюрные плавкие вставки с проволочными выводами

Требованиям к миниатюрным трубчатым плавким вставкам для автоматизированного монтажа электрических и электронных схем на печатных платах удовлетвориют плавкие вставки существующих типов размером 5×20 мм, форма которых пригодна для автоматизированного монтажа печатных плат.

Данное приложение дополняет требования настоящего стандарта, применяемые к уже испытанным и аттестованным плавким вставкам без проволочных выводов размером 5×20 мм.

А.1 Нель

Данное приложение связано со специальными требованиями к миниатюрным плавким вставкам для печатных схем, применяемых для электрических бытовых приборов, электронной аппаратуры и ее частей, обычно предназначенных для использования в закрытых помещениях.

Не задаются следующие параметры выводов: метод крепления, ориентация, геометрия поперечного сечения и ллина.

Цель настоящего приложения состоит в определении дополнительных методов испытаний миниатюрных плавких вставок с проволочными выводами.

А.2 Общие требования к испытаниям

В дополнение к требованиям п. 4 ГОСТ Р 50537 необходимо учитывать следующие критерии.

А.2.1 Типовые испытания

Требуемое количество миниатюрных плавких вставок равно 21, из которых три (с номерами 19—21) являются запасными на случай, если некоторые из испытаний потребуется повторить.

Требования п. 4.3.2 ГОСТ Р 50537 не применяют.

Не допускаются никакие отказы при любом из дополнительных испытаний, эключенных в настоящее приложение.

А.2.2 Программа проведения испытаний

Программа проведения испытаний миниатюрных плавких вставок с проволочными выводами должна соответствовать таблице А.1.

Таблина А.1

Номера		Номер плавкой вставки						
подпунктов	Наименование испытания	1, 2, 3	4, 5, 6	7, 8, 9, 10, 11, 12	13, 14, 15	16, 17, 18	19, 20, 21	
A.3.1	Размеры	+	+	+	+	+		
A,4.1	Падение напряжения	+	+					
:A.4.2	2,1 /n	+						
A.4:3	Номинальная отключающая спо- собность		+					
A.3,2	Механические испытания выводов				+			
A.3.3	Паяемость				+			
A.3.4	Теплостойкость при пайке					+		
A.4.1	Падение напряжения			+		+		

Примечание — Плавкие вставки с номерами 7, 8, 9, 10, 11, 12 и 16, 17, 18 испытывают до того, как припаивают к испытательной плате для измерения паления напряжения. Плавки вставки с номерами 13, 14, 15 не припаивают к испытательной плате.

А.2.3 Испытательные основания для испытаний

Миниатюрные плавкие вставки с проволочными выводами следует испытывать на плате, показанной на рисунке А.1. Плавкая вставка, которую подвергают испытанию, должна быть напаяна на плату с использованием минимального количества тепла, для получения удовлетворительного паяного соединения, а лишняя проволока должна быть удалена. Затем плату следует закрепить на основание, показанное на рисунке А.2.

Испытательную плату изготавливают из стеклотекстолита, фольгированного медью, в соответствии с ГОСТ 26246.5.

Номинальная толщина стеклютекстолита, включая металлическую фольгу, должна быть 1,6 мм.

FOCT P 50538-93

Номинальная толщина слоя меди должна быть 0,035 мм для плавких вставок, рассчитанных на ток 6,3 А включ., и 0,070 мм для плавких вставок, рассчитанных на ток св. 6,3 А.

Металлические части основания должны состоять из латуни с содержанием меди 58 %—70 %. Контактные части должны быть покрыты серебром.

А.3 Размеры и конструкция

В дополнение к требованиям раздела 5 ГОСТ Р 50537 необходимо учитывать следующие критерии.

А.3.1 Размеры

Размеры миниатюрных плавких вставок должны соответствовать рисунку А.3. Соответствие контролируют измерением.

А.3.2 Механические испытания выводов

Выводы должны выдерживать механические нагрузки, подобные тем, которые возникают при обычной эксплуатации. Соответствие контролируют следующими испытаниями, которые проводят в соответствии с [1]. Предварительно образцы погружают на 24 ч в воду температурой 15 °C—35 °C.

К каждому выводу миниатюрной плавкой вставки, находящейся в закрепленном положении, поочередно прикладывают силы, указанные в перечислениях а) и б). Испытательную выборку следует разделить поровну для следующих испытаний выводов.

а) Испытание U_{al}. Растяжение

Плавкую вставку закрепляют за корпус, выводы находятся в нормальном положении. В направлении от корпуса вставки по оси прикладывают силу, равную (10±1) Н. Силу прикладывают плавно (без каких-либо ударов) в течение (10±1) с.

Испытание U_b. Изгиб (применительно только к гибким выводам)

При испытании на изгиб в соответствии с [1] следует прикладывать силу, равную:

 (5 ± 0.5) H — для выводов диаметром 0.50-0.80 мм;

(10 ± 0,5) H » » 0,80-1,25 mm.

Делают два изгиба. Изгиб можно сделать по методу 1 (два изгиба в противоположном направлении) или по методу 2 (два изгиба в одном направлении) [1]:

Примечание — Значение силы, которую прикладывают к выводам с диаметром проволоки более 1,25 мм или к ленточным выводам, можно найти в таблице 3 [1].

К окончанию испытания выводы миниатюрной плавкой вставки должны оставаться прочно присоединенными, и падение напряжения не должно превышать максимально допустимых значений, указанных в соответствующих ТУ.

А.3.3 Паяемость выводов

В соответствии с ТОСТ 28211 плавки вставки подвергают испытанию T_a по методу 1 (паяльная ванна при 235 °C) при следующих условиях:

- старение, отсутствует
- условия погружения (235±5) °C, (2,0±0,5) с
- глубина погружения (2,0±0,5) мм (от опорной поверхности)
- тип флюса неактивированный
- экран используют

Осмотр должен производиться при достаточном освещении невооруженным глазом или с помощью лупы с 4—10^s увеличением.

Поверхность после погружения должна быть покрыта гладким и блестящим слоем припоя; допускается лишь незначительное количество дефектов (менее 10 % от испытательной поверхности) в виде пор, зон, не подвергавшихся смачиванию, или зон, где произошло десмачивание поверхности. Эти дефекты не должны концентрироваться на одном участке поверхности.

А.3.4 Теплостойкость при пайке.

В соответствии с ГОСТ 28211 плавкие вставки подвергают испытанию T_b по методу 1A (паяльная ванна при 260 °C) при следующих условиях:

- старение отсутствует
- условия погружения (260±5) °C, (10±1) с
- глубина погружения...... (2,0±0,5) мм (от опорной поверхности)
- тип флюса активированный
- экран экран используют

Плавкую вставку считают годной, если после испытания она не трескается, маркировка читабельна и цветовой код не меняет цвет.

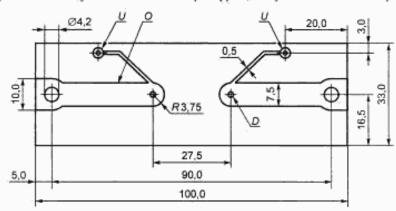
Падение напряжения измеряют, как указано в А.4.1, и оно не должно превышать максимально допустимых значений, приведенных в соответствующих ТУ.

А.4 Требования к электрическим параметрам

В дополнение к требованиям раздела 6 ГОСТ Р 50537 необходимо учитывать следующие критерии.

20

А.4.1 Падение напряжения

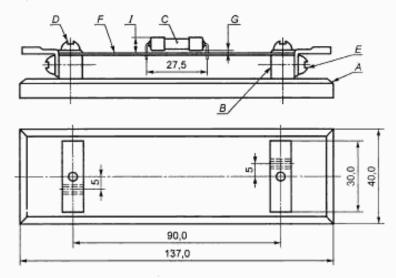

Для измерения падения напряжения рекомендуется вольтметр с высоким внутренним сопротивлением. Падение напряжения измеряют в точках, которые на рисунке А.1 обозначены U.

А.4.2 Ампер-секундная характеристика при нормальной температуре окружающей среды

Ампер-секундную характеристику при $2.1~I_{\rm R}$ контролируют, как указано в соответствующих технических условиях.

А.4.3 Отключающая способность

Номинальную отключающую способность контролируют, как указано в соответствующих ТУ.

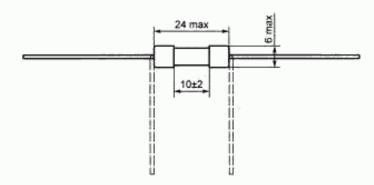


На рисунке масштаб не соблюден. Размеры в мидлиметрах,

O — слой меди: 0,035 мм для номинального тока 6,3 А включ. и 0,070 мм для номинального тока св. 6,3 А; U — контакты для измерения падения напряжения; D=1 мм для номинального тока 6,3 А включ. и D=1,5 мм для номинального тока св. 6,3 А.

Рисунок A.1 — Испытательная плата

П р и м е ч а н и е — Срок эксплуатации механического устройства определяется возможностью получения одинаковых результатов.


На рисунке масштаб не соблюден. Размеры и миллиметрах.

А— основавие из материала с низкой теплопроводностью, толшина 10 мм; В— латунные электроды 10×10 мм; С— распаянная плавкая вставка; D— крепежные винты; Е— контактные винты для жесткой фиксации испытательной платы; Е испытательная плата (рисунок А.1); С— расстояние между наконечником плавкой вставки и испытательной платой (0,25 мм минимум); Н— вид сверху на испытательное основание с латунными электродами 10×10 мм; І— максимальное расстояние, на которое плавкая вставка выступает над испытательной платой (10 мм)

Рисунок А.2 — Испытательное основание

ГОСТ P 50538-93

П р и м е ч а н и е — В соответствии с требованиями монтажа испытательного основания выводы плавкой вставки могут изгибаться.

На рисунке масштаб не соблюден. Размеры в миллиметрах.

Рисунок А.3 — Размеры плавкой вставки с проволочными выводами

Выводы

- а) Длину выводов не задают.
- Профиль поперечного сечения проволочных выводов не является обязательным.
- с) Вывод должен проходить через отверстие диаметром;
- 1,0 мм для номинального тока 6,3 А включ.;
- 1.5 mm *
- « св. 6;3 А.
- б) Ориентацию выводов не указывают (альтернативный вариант локазан выше).
- е) Способ фиксации выводов не указывают.

*

ПРИЛОЖЕНИЕ А. (Измененная редакция, Изм. № 2),

ПРИЛОЖЕНИЕ Б (справочное)

Библиография

МЭК 60068-2-21—99 Основные методы испытаний на воздействие внешних факторов. Часть 2. Испытания. Испытание U. Прочность выводов и их креплений к корпусу изделия

ПРИЛОЖЕНИЕ Б (Введено дополнительно, Изм. № 2).

ИНФОРМАЦИОННЫЕ ДАННЫЕ

- 1 ВНЕСЕН Техническим комитетом по стандартизации ТК 303
- 2 УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Постановлением Госстандарта России от 26 марта 1993 г.
- 3 Настоящий стандарт подготовлен методом прямого применения международного стандарта МЭК 127-2—89 «Миниатюрные плавкие предохранители. Часть 2. Трубчатые плавкие вставки» и полностью ему соответствует
- 4 ВВЕДЕН ВПЕРВЫЕ

5 ССЫЛОЧНЫЕ НОРМАТИВНО-ТЕХНИЧЕСКИЕ ДОКУМЕНТЫ

Обозначение отечественного НТД,	Обозначение соответствующего	Номер раздела, пункта, приложения,
на который дана ссылка	международного стандарта	в котором приведена ссылка
ΓΟCT 2.710—81 ΓΟCT 2.721—74 ΓΟCT 8.417—2002 ΓΟCT 8032—84 ΓΟCT 26246.5—89 ΓΟCT 28211—89 ΓΟCT P 50537—93	— — — — МЭК 249-2-5—89 МЭК 68-2-20—79 МЭК 127-1—88	1.2 1.2 1.2 1.1, разд. II 1.1, приложение А 1.1, приложение А Разд. I, 1.1, 1.3, 1.4, 1.5, 1.6, 2.1, 3, 4, разд. II, приложение А

6 ИЗДАНИЕ (декабрь 2003 г.) с Изменениями № 1, 2, принятыми в декабре 1996 г., марте 2003 г. (ИУС 2—97, 6—2003)

Редактор В.Н. Огурцов Технический редактор В.Н. Прусакова Корректор Н.Л. Рыбалко Компьютерная верстка А.Н. Золотаревой

Изд. лиц. № 02354 от 14:07,2000. Сдано в набор 04:02:2004. Подписано в печать 17:03:2004. Усл.печ.л. 3,26. Уч.-изд.л. 2,40. Тирыж 183 экд.: С 1162. Зак. 302:

ИПК Издательство стандартов, 107076 Москва, Колодезный пер., 14.

bttp://www.standards.ru e-mail: info@standards.ru
Набрано в Издательстве на ПЭВМ.
Отпечатано в филиале ИПК Издательство стандартов — тип. "Московский печатник", 105062 Москва, Лялин пер., 6.
Плр № 080192

