ГОСУДАРСТВЕННЫЯ СТАНДАРТ РОССИЙСКОЙ ФЕДЕРАЦИИ

материалы лакокрасочные

методы определения объемной доли нелетучих веществ

Издание официальное

FOCCTAHAAPT POCCHH

ГОСУДАРСТВЕННЫЙ СТАНДАРТ РОССИЙСКОЙ ФЕДЕРАЦИИ

МАТЕРИАЛЫ ЛАКОКРАСОЧНЫЕ

Методы определения объемной доли нелетучих веществ

FOCT P 50535---93

• Paintwork materials. Methods for determination of volume of non-volatile matters

OKCTY 2310

Дата введения

01.01.94

Настоящий стандарт распространяется на лакокрасочные материалы и устанавливает два метода определения объемной доли нелетучих веществ — А и Б.

За объемную долю нелетучих веществ принимают объем остатка, полученного после сушки жидкого испытуемого материала при указанной температуре в течение указанного времени.

1. МЕТОД А

1.1. Сущность метода

Сущность метода заключается в определении плотности жидкого лакокрасочного материала, массовой доли нелетучих веществ, плотности высушенного покрытия с последующим вычислением объемной доли нелетучих веществ.

Отбор проб лакокрасочного материала — по ГОСТ 9980.2.

1.3. Аппаратура и материалы

Весы торсионные типа ВТ-200 с погрешностью взвешивания не более 0,001 г, в которых чашка весов заменена противовесом с подвешенным металлическим крючком из проволоки диаметром не более 0,3 мм, инертной к жидкости, в которую она будет погружаться. Стрелка весов в ненагруженном состоянии должна устанавливаться на нулевой отметке шкалы. Допускается применять торсионные весы других типов, отвечающие указанным требованиям, или аналитические, преимущественно одночащечные весы с заменой чашки на противовес с крючком.

Стакан химический по ГОСТ 25336 вместимостью не менее 50 см³, позволяющий проводить взвешивание на торсионных весах.

Издание официальное

С Издательство стандартов, 1993

Настоящий стандарт не может быть полностью или частично воспроизведен, тиражирован и распространен без разрешения Госстандарта России Термометр стеклянный лабораторный по ГОСТ 28498 с ценой деления не более 1°C.

Фольга алюминиевая по ГОСТ 618 толщиной 45—60 мкм. Допускается применять полиэтилентерефталатиую пленку толщиной 50—70 мкм по ГОСТ 24234.

Жидкость для погружения высущенного покрытия: дистиллированная вода по ГОСТ 6709 или органическая жидкость с низкой растворяющей способностью, например, гексан.

Вещество вспомогательное ОП-7 по ГОСТ 8433, 1%-ный вод-

ный раствор.

1.4. Подготовка к испытанию

 1.4.1. Порядок подготовки пробы жидкого лакокрасочного материала к испытанию указывают в нормативно-технической документации на материал.

В случае двух- и многокомпонентных материалов испытание проводят сразу после смешивания всех компонентов в течение срока годности смеси.

1.4.2. Для определения плотности высущенного лакокрасочного материала используют или свободные пленки, или покрытия на подложке. Толщина пленки или вокрытия должна быть 30— 60 мкм.

Размер образцов для испытания (свободных пленок, покрытий на подложке, неокрашенных подложек) — 20×40 мм. Допускается использовать образцы других размеров, позволяющих свободно погружать их в стакан с жидкостью и проводить взвешивание на торсионных весах.

На расстоянии 2-3 мм от края образца делают небольшое от-

верстие для прикрепления образца к крючку.

- 1.4.3. Свободные пленки лакокрасочных материалов готовят по ГОСТ 14243.
- 1.4.4. В качестве подложки для нанесения покрытий используют алюминиевую фольгу (или полиэтилентерефталатную пленку). Толщина и площадь окращенной и неокращенной подложек в одной серии испытаний должна быть одинаковой.

Режимы нанесения покрытий на подложку и сушки указывают в нормативно-технической документации на лакокрасочный материал.

1.4.5. Для проведения испытания готовят не менее трех образцов.

1.5. Проведение испытания

1.5.1. Массовую долю нелетучих веществ (X_1) в испытуемом лакокрасочном материале определяют по ГОСТ 17537, разд. 1.

1.5.2. Плотность жидкого лакокрасочного материала (он) оп-

ределяют по ГОСТ 28513.

Допускается определять указанную плотность по п. 2.5.2 настоящего стандарта.

1.5.3. Плотность жидкости для погружения (ρ_*) определяют по ГОСТ 18995.1. Допускается использовать справочные данные.

1.5.4. Определение плотности свободной пленки (p_o)

Образец пленки прикрепляют к крючку на весах и определяют массу пленки в воздухе ($m_{\rm e}$). Затем в химический стакан наливают жидкость для погружения в таком количестве, чтобы уровень жидкости был выше края испытуемого образца на (5±2) мм. Отмечают уровень жидкости на стенке стакана и поддерживают этот уровень в течение всего периода испытания.

При использовании дистиллированной воды к ней добавляют

2—3 капли водного раствора ОП 7.

Определяют массу пленки в жидкости (m_m) . Снимают пленку с крючка. Определяют массу участка крючка (m_s) , погружаемого в жидкость вместе с образцом, в той же жидкости.

1.5.5. Определение плотности покрытия на подложке (p_o)

Взвешивают неокрашенную подложку в воздухе $(m_{\rm ex})$ и в жидкости $(m_{\rm pos})$. Затем взвешивают покрытие на подложке в воздухе $(m_{\rm res})$ и в жидкости $(m_{\rm pos})$.

1.6. Обработка результатов

 Плотность свободной пленки (ρ₀) в граммах на кубический сантиметр вычисляют по формуле

$$\hat{P}_0 = \frac{m_0}{m_0 - (m_K + m_K)} \cdot \hat{P}_K,$$

где m₂ — масса пленки в воздухе, мг;

 m_* — масса пленки в жидкости, мг;

 $m_{\rm R}$ — масса участка крючка в жидкости, мг;

ры — плотность жидкости, г/см³.

 1.6.2. Плотность покрытия на подложке (ρ_s) в граммах на кубический сантиметр вычисляют по формуле

$$\rho_0 = \frac{m_{0 \times 8} - m_{08}}{(m_{0 \times 8} - m_{0.9}) - (m_{0 \times 8} - m_{0.9})} \cdot \rho_{\infty},$$

где $m_{\text{пия}}$ — масса покрытия на подложке в воздухе, мг;

ты — масса неокрашенной подложки в воздухе, мг;

тими — масса покрытия на подложке в жидкости, мг;

 $m_{\rm ms}$ — масса неокрашенной подложки в жидкости, мг.

1.6.3. Объемную долю нелетучих веществ в лакокрасочном материале (V_{***}) в процентах вычисляют по формуле

$$V_{\rm ss} = \frac{p_{\rm st}}{p_{\rm o}} \cdot X_1$$

где ρ_n — плотность жидкого лакокрасочного материала, г/см³;

 ρ_0 — плотность покрытия (пленки), г/см³;

 X_1 — массовая доля нелетучих веществ, %.

За результат испытания принимают среднее арифметическое значение трех параллельных определений, расхождения между которыми не должны превышать 1%.

2. МЕТОД Б

2.1. Сущность метода

Сущность метода заключается в определении плотности и массовой доли нелетучих веществ жидкого лакокрасочного материала с последующим вычислением объемной веществ.

Метод не распространяется на лакокрасочные материалы, вязкость которых не может быть измерена на вискозиметре ВЗ-246 no FOCT 8420.

2.2. Отбор проб лакокрасочного материала — по ГОСТ 9980.2.

2.3. Аппаратура

Весы лабораторные технические с погрешностью взвешивания: не более 0.01 г.

Цильндр мерный 4—100 по ГОСТ 1770 с ценой деления 1 см³. Воронка стеклянная марки В по ГОСТ 25336.

Подготовка к непытанию — по п. 1.4.1.

2.5. Проведение испытания

2.5.1. Массовую долю нелетучих веществ (X_1) определяют по ГОСТ 17537, разд. 1.

2.5.2. Определение плотности жидкого лакокрасочного мате-

puana (ρ_*)

Определяют, массу мерного цилиндра с пробкой (m_0) взвеши-

ваннем.

Наливают в него через воронку 50-100 см³ неразбавленного лакокрасочного материала, при этом нижний конец воронки не должен касаться поверхности материала. Воронку осторожно вынимают из цилиндра, следя за тем, чтобы капли лакокрасочного материала не попали на стенки верхней части цилиндра. Закрывают цилиндр пробкой. Отмечают объем материала (Vм) в цилиндре с точностью до 1 см³. Определяют массу цилиндра с материалом (m_{мп}). .

Проводят три параллельных определения.

2.6. Обработка результатов

2.6.1. Плотность испытуемого лакокрасочного материала (р.) в граммах на кубический сантиметр вычисляют по формуле

$$\rho_{\rm M} = \frac{m_{\rm M}}{V_{\rm M}}$$

чде $m_{\rm M}$ — масса лакокрасочного материала $(m_{\rm M} = m_{\rm MR} - m_{\rm R})$, г;

 $V_{\rm M}$ — объем испытуемого материала, см 3 . 2.6.2. Объем 100 г лакокрасочного материала ($V'_{\rm M}$) в кубичес-

жих сантиметрах вычисляют по формуле

$$V_{\rm wi} = \frac{100}{9\rm w}$$
.

2.6.3. Объем летучих веществ (V_{ns}) в кубических сантиметрах в 100 г лакокрасочного материала вычисляют по формуле

$$V_{\rm AB} = \frac{100 - X_1}{948}$$
,

где X_1 — массовая доля нелетучих веществ, отнесенная к 100 г лакокрасочного материала, г;

ρ_{мв} — плотность летучих веществ испытуемого лакокрасочного материала, г/см³, рассчитывают по значениям плотностей отдельных растворителей (см. приложение) в
соответствии с их содержанием в рецептуре материала.

2.6.4. Объемную долю нелетучих веществ ($V_{\mu s}$) в процентах: вычисляют по формуле

$$V_{\rm ns} = \frac{V_{\rm M} - V_{\rm AB}}{V_{\rm M}} \cdot 100.$$

За результат испытания принимают среднее арифметическое результатов трех параллельных определений, расхождения между которыми не должны превышать 1%.

ПРИЛОЖЕНИЕ Справочное

Плотности растворителей, наиболее применяемых в рецептурах ЛКМ

Наименование	Плотность",	Наименование	Плотность ^в ,
растворителя	г/см*	растворителя	г/см³
Ацетон	0,791	P-4	0,851
Бензия	0,795	P-5	0,853
Бензол	0,877	P-6	0,845
Бутанол	0,813	P-7	0,869
Бутилацетат	0,902	P-12	0,877
Бутилиеллозолья	0,659	P-14	9,908
Гексан	0,782	P-24	0,851
Изопропанол	0,863	P-60	0,899
Ксилол	0,864	P-645	0,832
Метилэтилистон	0,860	P-645	0,861
Сольвент	0,867	P-646	0,855
Толуол	0,795	P-647	- 0,831
Уайт-спирит	0,795	P-648	0,866
Циклогексанон	0,789	P-649	0,872
Этилцеллозольв	0,789	P-650	0,862

Плотности указаны при температуре 20°С.

ИНФОРМАЦИОННЫЕ ДАННЫЕ

1. ПОДГОТОВЛЕН И ВНЕСЕН Техническим комитетом ТК195 «Материалы лакокрасочные»

РАЗРАБОТЧИКИ

- В. В. Задымов, канд. техн. наук; Э. Н. Шубина, канд. техн. наук; Н. В. Майорова, канд. хим. наук; М. И. Мошошина, канд. техн. наук; Т. В. Еремеева, Л. К. Косарева, Н. В. Красникова, Н. Г. Моисеева
- 2. УТВЕРЖДЕН И ВВЕДЕН В ДЕИСТВИЕ Постановлением Госстандарта России от 23.03.93 № 88
- 3. ВВЕДЕН ВПЕРВЫЕ
- 4. ССЫЛОЧНЫЕ НОРМАТИВНО-ТЕХНИЧЕСКИЕ ДОКУМЕН-ТЫ

Обозначение НТД, на который двия осылка	Номер раздела, пункта	
FOCT 618—73 FOCT 1770—74 FOCT 6709—72 FOCT 8420—74 FOCT 8433—81 FOCT 9980.2—86 FOCT 14243—78 FOCT 17537—72, pasg. 1 FOCT 18995.1—73 FOCT 24234—80 FOCT 25336—82 FOCT 28498—90 FOCT 28513—90	1.3 2.3 1.3 2.1 1.3 1.2; 2.2 1.4.3 1.5.1; 2.5.1 1.5.3 1.3 1.3; 2.3 1.3; 2.3	

Редактор Л. И. Нахимова Техинческий редактор О. Н. Никитина Корректор В. М. Смирнова

Сдано в наб. 16.04.98.

Подп. в веч. 16.05.93. Усл. п. м. 0.5. Уч.-изд. п. 0.41. Тир. 838 экз. С 279.

Уся. пр. отт. 0.5.

Ордена «Знак Почета» Издательство стандартов, 107076, Москва, Колодезный вер., 14. Тип. «Московский печатинк». Москва, Лядин пер., 6: Зак. 267.

