МЕЖГОСУДАРСТВЕННЫЙ СТАНДАРТ

ВОДА ПИТЬЕВАЯ

МЕТОДЫ ОПРЕДЕЛЕНИЯ ВКУСА, ЗАПАХА, ЦВЕТНОСТИ И МУТНОСТИ

Издание официальное

ИПК ИЗДАТЕЛЬСТВО СТАНДАРТОВ Москва

УДК 663.61:543.3:006.354 Группа Н09

МЕЖГОСУДАРСТВЕННЫЙ СТАНДАРТ

ВОДА ПИТЬЕВАЯ

Методы определения вкуса, запаха, цветности и мутности ΓΟCT 3351-74

Drinking water. Methods for determination of odour, taste, colour and turbidity

MKC 13.060.20 OKCTY 9109

Дата введения 01.07.75

Настоящий стандарт распространяется на питьевую воду и устанавливает органолептические методы определения запаха, вкуса и привкуса и фотометрические методы определения цветности и мутности.

1. ОТБОР ПРОБ

1.1. Отбор проб — по ГОСТ 24481*.

(Измененная редакция, Изм. № 1).

- Объем пробы воды не должен быть менее 500 см³.
- Пробы воды для определения запаха, вкуса, привкуса и цветности не консервируют. Определение проводят не позднее чем через 2 ч после отбора пробы.

2. ОРГАНОЛЕПТИЧЕСКИЕ МЕТОДЫ ОПРЕДЕЛЕНИЯ ЗАПАХА

Органолептическими методами определяют характер и интенсивность запаха.

2.2. Аппаратура, материалы

Для проведения испытаний используют следующую аппаратуру:

колбы плоскодонные с притертыми пробками по ГОСТ 1770, вместимостью 250—350 см³; стекло часовое;

баню водяную.

2.3. Проведение испытания

- Характер запаха воды определяют ощущением воспринимаемого запаха (землистый, хлорный, нефтепродуктов и др.).
 - 2.3.2. Определение запаха при 20 °C

В колбу с притертой пробкой вместимостью 250—350 см³ отмеривают 100 см³ испытуемой воды температурой 20 °C. Колбу закрывают пробкой, содержимое колбы несколько раз перемешивают вращательными движениями, после чего колбу открывают и определяют характер и интенсивность запаха.

2.3.3. Определение запаха при 60 °C

В колбу отмеривают 100 см³ испытуемой воды. Горлышко колбы закрывают часовым стеклом и подогревают на водяной бане до 50—60 °C.

Содержимое колбы несколько раз перемещивают вращательными движениями.

Сдвигая стекло в сторону, быстро определяют характер и интенсивность запаха.

2.3.4. Интенсивность запаха воды определяют при 20 и 60 °C и оценивают по пятибалльной системе согласно требованиям табл. 1.

Издание официальное

Перепечатка воспрещена

 \star

© Издательство стандартов, 1974 © ИПК Издательство стандартов, 2003

На территории Российской Федерации действует ГОСТ Р 51593—2000.

Интенсивность запаха	Характер проявления запаха	Оценка интенсивности запаха, балл
Her	Запах не ощущается	0
Очень слабая	Запах не ощущается потребителем, но обнаруживается при лабораторном	
	исследовании	1
Слабая	Запах замечается потребителем, если обратить на это его внимание	2
Заметная	Запах легко замечается и вызывает неодобрительный отзыв о воде	3.
Отчетливая	Запах обращает на себя внимание и заставляет воздержаться от питья	4
Очень сильная	Запах настолько сильный, что делает воду непригодной к употреблению	5

3. ОРГАНОЛЕПТИЧЕСКИЙ МЕТОД ОПРЕДЕЛЕНИЯ ВКУСА

Органолептическим методом определяют характер и интенсивность вкуса и привкуса.
Различают четыре основных вида вкуса: соленый, кислый, сладкий, горький.

Все другие виды вкусовых ощущений называются привкусами.

3.2. Проведение испытания

- Характер вкуса или привкуса определяют ощущением воспринимаемого вкуса или привкуса (соленый, кислый, щелочной, металлический и т. д.).
- 3.2.2. Испытуемую воду набирают в рот малыми порциями, не проглатывая, задерживают 3—5 с.
- 3.2.3. Интенсивность вкуса и привкуса определяют при 20 °C и оценивают по пятибалльной системе согласно требованиям табл. 2.

Таблица 2

Интенсивность вкуса и привкуса	Характер проявления вкуса и привкуса	Оценка интен- сивности вкуса и привкуса, балл
Нет	Вкус и привкус не ощущаются	0
Очень слабая	Вкус и привкус не ощущаются потребителем, но обнаруживаются при лабораторном исследовании	1
Слабая	Вкус и привкус замечаются потребителем, если обратить на это его внимание	2
Заметная	Вкус и привкус легко замечаются и вызывают неодобрительный отзыв о воде	. 3
Отчетливая	Вкус и привкус обращают на себя внимание и заставляют воздержаться от питья	4
Очень сильная	Вкус и привкус настолько сильные, что делают воду непригодной к употреблению	5

4. ФОТОМЕТРИЧЕСКИЙ МЕТОД ОПРЕДЕЛЕНИЯ ЦВЕТНОСТИ

Цветность воды определяют фотометрически — путем сравнения проб испытуемой жидкости с растворами, имитирующими цвет природной воды.

4.1. Аппаратура, материалы, реактивы

Для проведения испытаний применяют следующие аппаратуру, материалы, реактивы: фотоэлектроколориметр (ФЭК) с синим светофильтром ($\lambda = 413$ нм);

кюветы с толшиной поглошающего свет слоя 5-10 см;

колбы мерные по ГОСТ 1770, вместимостью 1000 см3;

пипетки мерные по ГОСТ 29227, вместимостью 1, 5, 10 см³ с делениями на 0,1 см³;

цилиндры Несслера на 100 см3;

калий двухромовокислый по ГОСТ 4220:

кобальт сернокислый по ГОСТ 4462;

кислоту серную по ГОСТ 4204, плотностью 1,84 г/см3;

воду дистиллированную по ГОСТ 6709;

фильтры мембранные № 4.

Все реактивы, используемые в анализе, должны быть квалификации «чистые для анализа»: (Измененная редакция, Изм. № 1).

4.2. Подготовка к испытанию

4.2.1. Приготовление основного стандартного раствора (раствор № 1)

0.0875 г двухромовокислого калия ($K_2Cr_2O_7$), 2.0 г сернокислого кобальта ($CoSO_4\cdot 7H_2O$) и 1 см³ серной кислоты (плотностью 1.84 г/см³) растворяют в дистиллированной воде и доводят объем раствора до 1 дм³. Раствор соответствует цветности 500° .

4.2.2. Приготовление разбавленного раствора серной кислоты (раствор № 2)

1 см³ концентрированной серной кислоты плотностью 1,84 г/см³ доводят дистиллированной водой до 1 дм³.

4.2.3. Приготовление шкалы цветности

Для приготовления шкалы цветности используют набор цилиндров Несслера вместимостью 100 см³.

В каждом цилиндре смешивают раствор № 1 и раствор № 2 в соотношении, указанном на шкале цветности (табл. 3).

Шкала пветности

Таблина 3

Раствор № 1, см ³	0	1	2	.3	,4	5"	6	В	10	12	14
Раствор № 2, см ³	100	99	98	97	96	95	94	92	90	88	85
Градусы цветности	0	5	10	15	20	25	30	40	50	60	70

Раствор в каждом цилиндре соответствует определенному градусу цветности. Шкалу цветности хранят в темном месте. Через каждые 2—3 мес ее заменяют.

4.2.4. Построение градуировочного графика

Градуировочный график строят по шкале цветности. Полученные значения оптических плотностей и соответствующие им градусы цветности наносят на график.

4.2.5. Проведение испытаний

В цилиндр Несслера отмеривают 100 см³ профильтрованной через мембранный фильтр исследуемой воды и сравнивают со шкалой цветности, производя просмотр сверху на белом фоне. Если исследуемая проба воды имеет цветность выше 70°, пробу следует разбавить дистиллированной водой в определенном соотношении до получения окраски исследуемой воды, сравнимой с окраской шкалы цветности.

Полученный результат умножают на число, соответствующее разбавлению.

При определении цветности с помощью электрофотоколориметра используют кюветы с толщиной поглощающего свет слоя 5—10 см. Контрольной жидкостью служит дистиллированная вода, из которой удалены взвещенные вещества путем фильтрации через мембранные фильтры № 4.

Оптическую плотность фильтрата исследуемой пробы воды измеряют в синей части спектра со светофильтром при $\lambda = 413$ нм.

Цветность определяют по градуировочному графику и выражают в градусах цветности.

5. ФОТОМЕТРИЧЕСКИЙ МЕТОД ОПРЕДЕЛЕНИЯ МУТНОСТИ

Определение мутности проводят не позднее чем через 24 ч после отбора пробы.

Проба может быть законсервирована добавлением 2-4 см³ хлороформа на 1 дм³ воды.

Мутность воды определяют фотометрически — путем сравнения проб исследуемой воды со стандартными суспензиями.

Результаты измерений выражают в мг/дм³ (при использовании основной стандартной суспензии каолина) или в ЕМ/дм³ (единицы мутности на дм³) (при использовании основной стандартной суспензии формазина). Переход от мг/дм³ к ЕМ/дм³ осуществляют, исходя из соотношения: 1,5 мг/дм³ каолина соответствуют 2,6 ЕМ/дм³ формазина или 1 ЕМ/дм³ соответствует 0,58 мг/дм³.

 Для проведения испытаний применяют следующие аппаратуру, материалы, реактивы: фотоэлектроколориметр любой марки с зеленым светофильтром λ = 530 нм;

кюветы с толщиной поглощающего свет слоя 50 и 100 мм; весы лабораторные по ГОСТ 24104*, класс точности 1, 2;

* С 1 июля 2002 г. введен в действие ГОСТ 24104-2001.

C. 4 FOCT 3351-74

шкаф сушильный;

центрифуга;

тигли фарфоровые по ГОСТ 9147;

прибор для фильтрования через мембранные фильтры с водоструйным насосом;

пипетки мерные по ГОСТ 29227, вместимостью 25, 100 см3;

пипетки мерные по ГОСТ 29227, вместимостью 1, 2, 5, 10 см3 с делениями на 0,1 см3;

цилиндры мерные по ГОСТ 1770, вместимостью 500 и 1000 см3;

каолин обогащенный для парфюмерной промышленности по ГОСТ 21285 или для кабельной промышленности по ГОСТ 21288;

калия пирофосфат $K_4P_2O_7$:3 H_2O или натрия пирофосфат $Na_2P_2O_7$:3 H_2O_7 ;

гидразинсульфат (NH₂)₂·H₂SO₄ по ГОСТ 5841;

гексаметилентетрамин для монокристаллов (СН2)6 N4;

ртуть хлорная;

формалин по ГОСТ 1625;

хлороформ по ГОСТ 20015;

вода дистиллированная по ГОСТ 6709 и бидистиллированная;

фильтр мембранный с диаметром пор 0,5—0,8 мкм, который должен быть подготовлен к анализу в соответствии с указаниями предприятия-изготовителя.

Фильтры мембранные (нитроцеллюлозные) проверяют на отсутствие трещин, отверстий и т. п., помещают по одному на поверхность дистиллированной воды, нагретой до 80 °C в стакане (в чашке для выпаривания, эмалированной кастрюле), медленно доводят до кипения на слабом отне, после чего воду заменяют и кипятят 10 мин. Смену воды и последующее кипячение повторяют три-пять раз до полного удаления остатков растворителей из фильтров.

Фильтрующие мембраны «Владипор» типа ФМА-МА, визуально проверенные на отсутствие трещин, отверстий, пузырей, во избежание скручивания мембран кипятят однократно, соблюдая следующие правила:

в небольшом объеме дистиллированной воды, нагретой до 80—90 °C в сосуде, на дне которого вкладывают сторож для молока или нержавеющую сетку (для ограничения бурного кипения), помещают мембраны и кипятят на слабом огне 15 мин.

После этого мембраны готовы к употреблению.

5.3. Подготовка к испытанию

Стандартные суспензии могут быть изготовлены из каолина или формазина.

5.1—5.3. (Измененная редакция, Изм. № 1).

5.3.1. Приготовление основной стандартной суспензии из каолина

25—30 г каолина хорошо взбалтывают с 3—4 дм³ дистиллированной воды и оставляют стоять 24 ч. Через 24 ч сифоном отбирают неосветлившуюся часть жидкости. К оставшейся части вновь приливают воду, сильно взбалтывают, снова оставляют в покое на 24 ч и вновь отбирают среднюю неосветлившуюся часть. Эту операцию повторяют трижды, каждый раз присоединяя неосветлившуюся в течение суток суспензию к ранее собранной. Накопленную суспензию хорошо взбалтывают и через трое суток сливают жидкость над осадком, как содержащую слишком мелкие частицы.

К полученному осадку добавляют 100 см³ дистиллированной воды, взбалтывают и получают основную стандартную суспензию.

Концентрацию основной суспензии определяют весовым методом (не менее чем из двух параллельных проб): 5 см³ суспензии помещают в титель, доведенный до постоянной массы, высушивают при температуре 105 °C до постоянной массы, взвешивают и рассчитывают содержание каолина на 1 дм³ суспензии.

Затем основную стандартную суспензию стабилизируют пирофосфатом калия или натрия (200 мг на 1 дм³) и консервируют насыщенным раствором хлорной ртути (1 см³ на 1 дм³), формалином (10 см³ на 1 дм³) или хлороформом (1 см³ на 1 дм³).

Основная стандартная суспензия хранится в течение 6 мес. Эта основная стандартная суспензия должна содержать около 4 г/дм³ каолина.

5.3.2. Приготовление рабочих стандартных суспензий из каолина

Для приготовления рабочих стандартных суспензий мутности основную стандартную суспензию взбалтывают и готовят из нее суспензию, содержащую 100 мг/дм³ каолина. Из промежуточной суспензии готовят рабочие суспензии концентрацией 0,5; 1,0; 1,5; 2,0; 3,0; 4,0; 5,0 мг/дм³. Промежуточная суспензия и все рабочие суспензии готовятся на бидистиллированной воде и хранятся не более суток.

- 5.3.3. Приготовление основной стандартной суспензии из формазина
- 5.3.1—5.3.3. (Измененная редакция, Изм. № 1).
- 5.3.3.1. Приготовление основной стандартной суспензии формазина 1, содержащей 0,4 ЕМ в 1 см³ раствора

Раствор A. 0,5 г гидразинсульфата $(NH_2)_2$ H_2SO_4 растворяют в дистиллированной воде и доводят объем до 50 см³.

Раствор В. 2,5 г гексаметилентетрамина $(CH_2)_6N_4$ разбавляют в мерной колбе вместимостью 500 см³ в 25 см³ дистиллированной воды.

25 см³ раствора А добавляют к раствору Б и выдерживают (24±2) ч при температуре (25±5) "С. Затем добавляют дистиллированную воду до метки. Основная стандартная суспензия формазина хранится 2 мес и не требует консервации и стабилизации.

5.3.3.2. Приготовление стандартной суспензии формазина 11, содержащей 0,04 ЕМ в 1 см³ раствора

50 см³ тщательно перемещанной основной стандартной суспензии формазина I разбавляют дистиллированной водой до объема 500 см³. Стандартная суспензия формазина II хранится две недели.

- .5,3.3.1, 5.3.3.2. (Введены дополнительно, Изм. № 1).
- 5.3.4. Приготовление рабочих стандартных суспензий из формазина
- 2,5; 5,0; 10,0; 20,0 см³ предварительно перемешанной стандартной суспензии формазина II доводят до объема 100 см³ бидистиллированной водой и получают рабочие стандартные суспензии концентрации 1; 2; 4; 8 ЕМ/дм³.
 - 5.3.5. Построение градуировочного графика

Градуировочный график строят по стандартным рабочим суспензиям. Полученные значения оптических плотностей и соответствующие им концентрации стандартных суспензий (мг/дм³; EM/дм³) наносят на график.

5.4. Проведение испытания

Перед проведением испытания во избежание ошибок проводят калибровку фотоколориметров по жидким стандартным суспензиям мутности или по набору твердых стандартных суспензий мутности с известной оптической плотностью.

В кювету с толщиной поглощающего свет слоя 100 мм вносят хорошо взболтанную испытуемую пробу и измеряют оптическую плотность в зеленой части спектра ($\lambda = 530$ нм). Если цветность измеряемой воды ниже 10° по Cr-Co шкале, то контрольной жидкостью служит бидистиллированная вода. Если цветность измеряемой пробы выше 10° Cr-Co шкалы, то контрольной жидкостью служит испытуемая вода, из которой удалены взвешенные вещества центрифугированием (центрифугируют 5 мин при 3000 мин⁻¹) или фильтрованием через мембранный фильтр с диаметром пор 0.5—0.8 мкм.

Содержание мутности в мг/дм³ или EM/дм³ определяют по соответствующему градуировочному графику.

Окончательный результат определения выражают в мг/дм3 по каолину.

5.3.4, 5.3.5, 5.4. (Измененная редакция, Изм. № 1).

ИНФОРМАЦИОННЫЕ ДАННЫЕ

- УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Постановлением Государственного комитета стандартов Совета Министров СССР от 24.05.74 № 1309
- 2. B3AMEH ΓΟCT 3351-46
- 3. ССЫЛОЧНЫЕ НОРМАТИВНО-ТЕХНИЧЕСКИЕ ДОКУМЕНТЫ

Обозначение НТД, на кото- рый дана ссылка	Номер пункта	Обозначение НТД, на который дана ссылка	Номер пункта
FOCT 1625—89	5.2	FOCT 9147—80	5.2
FOCT 1770—74	2.2, 4.1, 5.2	FOCT 20015—88	5.2
FOCT 4204—77	4.1	FOCT 21285—75	5.2
FOCT 4220—75	4.1	FOCT 21288—75	5.2
FOCT 4462—78	4.1	FOCT 24104—88	5.2
FOCT 5841—74	5.2	FOCT 24481—80	1.1
FOCT 6709—72	4.1, 5.2	FOCT 29227—91	4.1.4.5.2

- Ограничение срока действия снято по протоколу № 4—93 Межгосударственного совета по стандартизации, метрологии и сертификации (ИУС 4—94)
- 5. ИЗДАНИЕ (сентябрь 2003 г.) с Изменением № 1, утвержденным в феврале 1985 г. (ИУС 5-85)

Редактор В.Н. Копысов Технический редактор Л.А. Гусена Корректор Н.Л. Рыбалко Компьютерная верстка Л.А. Круговой

Изд. лиц. № 02354 от 14.07.2000. — Сдано в набор 24.09.2003. — Подписано в печать 11.11.2003. — Усл. печ. л. 0,93. — Уч.-изд. л. 0,65. — Тираж 200 экз. — С 12624. — Зак. 917.

ИПК Издательство стандартов, 107076 Москва, Колодезный пер., 14. http://www.standards.ru e-mail: info@standards.ru Набрано в Издательстве на ПЭВМ

Отвечатано в филиале ИПК Издательство стандартов — тип. «Московский печатник», 105062 Москва, Лялий пер., 6. Плр № 080102

