МЕЖГОСУДАРСТВЕННЫЙ СТАНДАРТ

СПЛАВЫ МАГНИЕВЫЕ

Методы определения меди

ГОСТ 3240.12—76

Magnesium alloys. Methods for determination of copper

МКС 77.120.20 ОКСТУ 1709

Дата введения 01.01.78

Настоящий стандарт устанавливает фотометрический и атомно-абсорбционный методы определения меди (при массовой доле меди от 0,001 до 0,8 %).

1. ОБЩИЕ ТРЕБОВАНИЯ

Общие требования к методам анализа — по ГОСТ 3240.0.

2. ФОТОМЕТРИЧЕСКИЙ МЕТОД ОПРЕДЕЛЕНИЯ СОДЕРЖАНИЯ МЕДИ

2.1. Сущность метода

Метод основан на образовании комплексного соединения меди с бисацетальдегид-оксалилдигидразидом при pH 7,8—9,8 и фотометрировании интенсивности окраски полученного комплексного соединения, окрашенного в фиолетовый цвет, при $\lambda_{max} = 536$ нм.

(Измененная редакция, Изм. № 1).

2.2. Аппаратура, реактивы и растворы

Спектрофотометр или фотоэлектроколориметр.

Кислота соляная по ГОСТ 3118, разбавленная 1:1.

Кислота азотная по ГОСТ 4461, разбавленная 1:1.

Аммоний лимоннокислый по ТУ 6-09-01-766 однозамещенный, 40 %-ный раствор.

Спирт этиловый ректификованный по ГОСТ 5962*.

Нейтральный красный, 0,01 %-ный спиртовой раствор.

Аммиак водный по ГОСТ 3760 и разбавленный 1:1.

Аммоний хлористый по ГОСТ 3773, 20 %-ный раствор.

Буферный раствор с рН 9,9, готовят следующим образом: 500 см³ раствора хлористого аммония смешивают с 500 см³ аммиака, разбавленного 1:1.

Альдегид уксусный, раствор; готовят следующим образом: в мерную колбу вместимостью 1000 см³ вносят 500 см³ воды и медленно прибавляют из охлажденной под струей воды ампулы 400 см³ уксусного альдегида, затем доливают водой до метки и перемещивают.

Оксалилдигидразид, 0,25 %-ный раствор.

Магний хлористый, раствор; готовят следующим образом: 210 г хлористого магния по ГОСТ 4209 растворяют в воде, фильтруют через фильтр средней плотности в мерную колбу вместимостью 1000 см³, доливают до метки водой и перемешивают.

1 см³ раствора содержит 25 мг магния.

Медь марки М0 по ГОСТ 859.

Издание официальное

Перепечатка воспрещена

^{*} На территории Российской Федерации действует ГОСТ Р 51652-2000.

Таблица 1

Стандартные растворы меди

Раствор А; готовят следующим образом: 0,5 г меди растворяют в азотной кислоте, разбавленной 1:1, удаляют окислы азота кипячением, переводят раствор в мерную колбу вместимостью 500 см³, разбавляют до метки водой и перемешивают.

1 см3 раствора A содержит 1 мг меди.

Раствор Б; готовят следующим образом: 5 см³ раствора А переносят в мерную колбу вместимостью 500 см³, разбавляют водой до метки и перемешивают.

1 см³ раствора Б содержит 0,01 мг меди.

2.3. Проведение анализа

2.3.1. Навеску сплава массой 1 г помещают в стакан вместимостью 400 см³ и растворяют в 20 см³ соляной кислоты. К раствору добавляют 2—3 капли азотной кислоты, кипятят до удаления окислов азота, переносят в мерную колбу вместимостью 100 см³, разбавляют до метки водой и перемешивают.

В зависимости от массовой доли меди отбирают для анализа в мерную колбу вместимостью 100 см³ различные аликвотные части раствора, указанные в табл. 1.

Затем приливают 10 см³ раствора лимоннокислого аммония, две капли нейтрального красного, нейтрализуют аммиаком до желтой окраски раствора, прибавляют 10 см³ раствора уксусного альдегида и снова нейтрализуют до желтой окраски раствора.

раствора. Раствор тщательно перемешивают, прибавляют 20 см³ буферного раствора, 20 см³ раствора

 Массовая доля меди. %
 Аликвотная часть раствора, см¹

 От 0,001 до 0,02 Св. 0,02 » 0,16 » 0,16 » 0,8
 25

оксалилдигидразида, разбавляют до метки водой и перемешивают. Через 15 мин измеряют оптическую плотность раствора $\lambda_{max} = 536$ нм, пользуясь соответствующими кюветами.

Раствором сравнения служит раствор контрольного опыта.

Массовую долю меди находят по градуировочному графику.

2.3.2. Построение градуировочного графика

2.3.2.1. При массовой доле меди от 0,001 до 0,02 %

В девять мерных колб вместимостью по 100 см^3 вносят по 10 см^3 раствора хлористого магния и 0; 0,25; 0,5; 1,0; 2,0; 3,0; 4,0; 5,0 и 6,0 см³ раствора Б, что соответствует 0; 2,5 · 10^{-6} ; 5 · 10^{-6} ; 1 · 10^{-5} ; 2 · 10^{-5} ; 3 · 10^{-5} ; 4 · 10^{-5} ; 5 · 10^{-5} и 6 · 10^{-5} г меди. Далее анализ ведут, как указано в п. 2.3.1.

2.3.2.2. При массовой доле меди от 0,02 до 0,16 %

В девять мерных колб вместимостью по 100 см^3 вносят по 4 см^3 раствора хлористого магния, затем последовательно 0; 2,0; 4,0; 6,0; 8,0; 10,0; 12,0; 14,0; 16,0 см 3 раствора 6, что соответствует 0; $2 \cdot 10^{-5}$; $4 \cdot 10^{-5}$; $6 \cdot 10^{-5}$; $8 \cdot 10^{-5}$; $1 \cdot 10^{-4}$; $1,2 \cdot 10^{-4}$; $1,4 \cdot 10^{-4}$; $1,6 \cdot 10^{-4}$ г меди. Далее анализ ведут, как указано в $6 \cdot 10^{-5}$ г. 10^{-5} г. 1

2.3.2.3. При массовой доле меди от 0,16 до 0,8 %

В девять мерных колб вместимостью по 100 см^3 вводят по 1 см^3 раствора хлористого магния, затем последовательно 0; 2,0; 4,0; 6,0; 8,0; 10,0; 12,0; 14,0; 16,0 см 3 раствора 6, что соответствует 0; $2 \cdot 10^{-5}$; $4 \cdot 10^{-5}$; $6 \cdot 10^{-5}$; $8 \cdot 10^{-5}$; $1 \cdot 10^{-4}$; $1,2 \cdot 10^{-4}$; $1,4 \cdot 10^{-4}$; $1,6 \cdot 10^{-4}$ г меди. Далее анализ ведут, как указано в 6 п. 6 г. 6 г.

2.3.2.1—2.3.2.3. (Измененная редакция, Изм. № 1).

2.4. Обработка результатов

2.4.1. Массовую долю калия (X) в процентах вычисляют по формуле

$$X = \frac{m \cdot V_1 - 100}{m_1 \cdot V_2},$$

где m — масса меди, найденная по градуировочному графику, г;

 V_1 — объем исходного раствора, см³;

 V_1 — объем аликвотной части раствора, см³;

т. - масса навески сплава, г.

(Измененная редакция, Изм. № 1).

C. 3 FOCT 3240.12-76

 2.4.2. Абсолютные допускаемые расхождения результатов параллельных определений не должны превышать значений, указанных в табл.

Таблица 2

Массовая доля	Абсолютное допускаемое	Массовая доля меди, %	Абсолютное допускаемое
мели, %	расхожление, %		расхождение, %
От 0,001 до 0,003 Св. 0,003 » 0,009 » 0,009 » 0,020 » 0,02 » 0,06	0,0005 0,001 0,003 0,005	Св. 0,06 до 0,16 * 0,16 » 0,4 » 0,4 » 0,8	0,008 0,03 0,05

2.5. Контроль точности измерений

Для контроля точности измерений массовой доли меди от 0,001 до 0,8 % используют государственные стандартные образцы магниевых сплавов, а также отраслевые стандартные образцы и стандартные образцы предприятия магниевых сплавов, выпущенные в соответствии с ГОСТ 8.315. Контроль точности измерений проводят в соответствии с ГОСТ 25086.

Допускается проводить контроль точности измерений массовой доли меди методом добавок.

(Введен дополнительно, Изм. № 1).

3. АТОМНО-АБСОРБЦИОННЫЙ МЕТОД ОПРЕДЕЛЕНИЯ СОДЕРЖАНИЯ МЕДИ

3.1. Сущность метода

Метод основан на измерении атомной абсорбции меди при длине волны 324,7 нм в пламени ацетилен — воздух.

3.2. Аппаратура, реактивы и растворы

Спектрофотометр атомно-абсорбционный,

Кислота азотная по ГОСТ 11125, ос. ч., разбавленная 1:1.

Кислота соляная по ГОСТ 14261, ос. ч., разбавленная 1:1.

Вода бидистиллированная, полученная по ГОСТ 4517.

Магний первичный в чушках по ГОСТ 804 марки Мг96 в виде стружки.

Раствор магния 50 г/дм³; 50 г магния растворяют в 800 см³ раствора соляной кислоты, переводят в мерную колбу вместимостью 1 дм³, разбавляют водой до метки и перемешивают.

Медь металлическая по ГОСТ 859 в виде стружки.

Стандартные растворы меди

Раствор А: 1 г меди растворяют в 50 см³ раствора азотной кислоты при осторожном нагревании. По окончании растворения раствор переносят в мерную колбу вместимостью 1 дм³, разбавляют водой до метки и перемешивают.

1 см³ раствора А содержит 0,001 г меди.

Раствор Б: 10 см³ раствора А переносят в мерную колбу вместимостью 100 см³, разбавляют водой до метки и перемешивают.

1 см3 раствора Б содержит 0,0001 г меди.

Ацетилен в баллонах по ГОСТ 5457.

3.1, 3.2. (Измененная редакция, Изм, № 1).

3.3. Проведение анализа

3.3.1. Навеску пробы массой 2 г помещают в стакан вместимостью 400 см³, осторожно растворяют в 30—35 см³ раствора соляной кислоты, добавляют 5—10 канель азотной кислоты, кипятят для удаления окислов азота. Раствор охлаждают, переносят в мерную колбу вместимостью 50 см³, доливают водой до метки и перемешивают.

При массовой доле меди от 0,1 до 0,5 % аликвотную часть раствора 10 см³ переносят в мерную колбу вместимостью 50 см³, доливат водой до метки и перемешивают. Параллельно пробе проводят анализ контрольного опыта.

Измеряют атомную абсорбцию меди в растворе пробы, растворе контрольного опыта и растворах для построения градуировочного графика на атомно-абсорбционном спектрофотометре относительно воды при длине волны 324,7 им в пламени ацетилен — воздух.

Массовую долю меди в пробе и растворе контрольного опыта определяют по градуировочному графику.

3.3.2. Построение градуировочного графика

Для построения градуировочного графика при массовой доле меди от 0,001 до 0,1 % в серию

мерных колб вместимостью 50 см³ вводят по 40 см³ раствора магния, 0; 0,2; 0,5; 1,0; 2,0 и 5,0 см³ раствора Б и 1,0; 2,0 см³ раствора А, что соответствует 0; 0,02; 0,05; 0,10; 0,20; 0,50; 1,0 и 2,0 мг меди, разбавляют водой до метки и перемешивают.

При массовой доле меди от 0,1 до 0,5 % в другую серию мерных колб вместимостью 50 см³ вводят 8 см³ раствора магния, а также 0; 4,0; 10,0; 20,0 см³ раствора Б, что соответствует 0; 0,4; 1,0 и 2,0 мг меди, разбавляют водой до метки, перемешивают и измеряют атомную абсорбцию меди согласно п. 3.3.1.

Из полученных значений атомной абсорбции растворов строят градуировочный график.

3.3.1; 3.3.2. (Измененная редакция, Изм. № 1).

3.4. Обработка результатов

3.4.1. Массовую долю меди (Х) в процентах вычисляют по формуле

$$X = \frac{m_1 - m_2}{m} \cdot 100,$$

где т, - масса меди в растворе пробы, найденная по градуировочному графику, г;

т. — масса меди в растворе контрольного опыта, найденная по градуировочному графику, г;

т — масса навески пробы, взятая для спектрофотометрирования, г.

3.4.2. Абсолютные допускаемые расхождения результатов параллельных определений не должны превышать значений, указанных в табл. 3.

Таблица 3

Массовая доля	Абсолютное допускаемое	Массоная доли	Абсолютное допускаемое расхождение, %
меди, %	расхождение, %	меди, Ж	
От 0,0010 до 0,0025 Св. 0,0025 » 0,0070 » 0,007 » 0,020 » 0,02 » 0,05	0,0001 0,0003 0,0005 0,0015	Св. 0,05 до 0,15 - 0,15 + 0,30 - 0,3 + 0,5	0,005 0,007 0,01

3.4.1; 3.4.2. (Измененная редакция, Изм. № 1).

3.5. Контроль точности измерений

Контроль точности измерений проводят по п. 2.5.

(Введен дополнительно, Изм. № 1).

ИНФОРМАЦИОННЫЕ ДАННЫЕ

- 1. РАЗРАБОТАН И ВНЕСЕН Министерством авиационной промышленности СССР
- УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Постановлением Государственного комитета стандартов Совета Министров СССР от 28.12.76 № 2889
- 3. ВЗАМЕН ГОСТ 3240—56 в части разд. III
- 4. ССЫЛОЧНЫЕ НОРМАТИВНО-ТЕХНИЧЕСКИЕ ДОКУМЕНТЫ

Обозначение НТД, на который дана ссылка	Номер пункта	Обозначение НТД, на который дана ссылка	Номер пункта
ΓΟCT 8.315—97	2.5	FQCT 446177	2.2
ΓΟCT 804—93	3.2	ΓΟCT 4517—87	3.2
ΓOCT 859—2001	2:2, 3.2	ΓOCT 5457—75	3.2
ΓΟCT 3118—77	2.2	ΓΟCT 5962—67	2.2
ΓΟCT 3240.0—76	1.1	ΓΟCT 11125—84	3.2
ΓΟCT 3760—79	2.2	ΓΟCT 14261—77	3.2
ΓΟCT 3773—72	2.2	FOCT 25086—87	2.5
ΓΟCT 4209—77	2.2	ТУ 6090176689	2.2

- Ограничение срока действия снято по протоколу № 2—92 Межгосударственного совета по стандартизации, метрологии и сертификации (ИУС 2—93)
- 6. ИЗДАНИЕ с Изменением № 1, утвержденным в июне 1987 г. (ИУС 11-87)