МУКА, ХЛЕБ И ХЛЕБОБУЛОЧНЫЕ ИЗДЕЛИЯ ПШЕНИЧНЫЕ ВИТАМИНИЗИРОВАННЫЕ

МЕТОД ОПРЕДЕЛЕНИЯ ВИТАМИНА РР (НИКОТИНОВОЙ КИСЛОТЫ)

Издание официальное

МЕЖГОСУДАРСТВЕННЫЙ СТАНДАРТ

МУКА, ХЛЕБ И ХЛЕБОБУЛОЧНЫЕ ИЗДЕЛИЯ ПШЕНИЧНЫЕ ВИТАМИНИЗИРОВАННЫЕ

Метод определения витамина РР (никотиновой кислоты)

FOCT 29140--91

Wheat vitaminized flour, bread and baked products.

Method for vitamin PP (nicotinic acid) determination.

MKC 67.060 OKCTY 9109, 9209

Дата введения 01.01.93

Настоящий стандарт распространяется на витаминизированные пшеничные муку, хлеб и хлебобулочные изделия, обогащаемые смесью витаминов, и устанавливает метод определения в продукте суммарного количества витамина РР (никотиновой кислоты) — свободной и связанной форм.

Сущность метода заключается в освобождении связанных форм никотиновой кислоты гидролизом, очистке полученного гидролизата, количественном получении окрашенного производного глутаконового альдегида и колориметрическом определении его массы в сравнении со стандартным раствором.

1. ОТБОР ПРОБ

- Отбор проб муки по ГОСТ 27668.
- Отбор проб хлеба и хлебобулочных изделий по ГОСТ 5667.
- Отбор проб сухарей по ГОСТ 8494.
- Отбор проб бараночных изделий по ГОСТ 7128.

2. АППАРАТУРА, МАТЕРИАЛЫ И РЕАКТИВЫ

Мельница типа ЛЗМ или аналогичного типа, обеспечивающая необходимую степень измельчения продукта,

Спектрофотометр или колориметр фотоэлектрический, обеспечивающие измерение в диапазоне длин волн 400—425 нм.

Полотно решетное типа 1, № 11 по ТУ 23.2.2068.

Весы лабораторные общего назначения с допускаемой погрешностью взвешивания ±0,01 г.

Весы лабораторные общего назначения с допускаемой погрешностью взвешивания ±0,001 г.

Мясорубка бытовая по ГОСТ 4025.

Нож.

Баня водяная лабораторная.

Баня водяная лабораторная, обеспечивающая поддержание температуры 50 °C с погрешностью ± 2 °C.

Центрифуга, обеспечивающая 4—6 тыс. об/мин.

Стакан фарфоровый № 8 вместимостью 2000 см3 по ГОСТ 9147.

Стаканы химические типов В и Н, исполнений 1, 2, вместимостью 1000 и 2000 см³ по ГОСТ 25336.

Колба типа II ТХС, исполнений 1, 2, вместимостью 250 см³ по ГОСТ 25336.

Колба коническая типа Кн, исполнений 1, 2, вместимостью 100 см3 по ГОСТ 25336.

Колбы мерные исполнения 2, вместимостью 100 и 500 см³ по ГОСТ 1770.

Цилиндр исполнений 2 и 4, вместимостью 50 см³ по ГОСТ 1770.

Пробирки исполнения 2, вместимостью 20 или 25 см³ по ГОСТ 1770.

Бюретка исполнения 3, вместимостью 25 см3 по ГОСТ 29251.

Пипетки исполнений 4, 5, вместимостью 1 и 2 см³ по ГОСТ 29227.

Издание официальное

Перепечатка воспрещена

Пипетки исполнений 6, 7, вместимостью 5 и 10 см3 по ГОСТ 29227.

Воронки лабораторные диаметром 75 и 100 мм по ГОСТ 25336.

Воронка Бюхнера № 3 или № 4 по ГОСТ 9147.

Палочки стеклянные по ГОСТ 21400.

Склянки из темного стекла с притертыми пробками вместимостью 200—500 см³.

Штатив химический.

Кислота никотиновая по ФС 42-2357.

Кислота серная по ГОСТ 4204, х. ч. или ч. д. а., растворы концентрации 0,05; 1,0 и 2,5 моль/дм³.

Кислота соляная по ГОСТ 3118, х. ч. или ч. д. а., раствор концентрации 0,5 моль/дм3.

Окись кальция по ГОСТ 8677, х. ч. или ч. д. а.

Бром по ГОСТ 4109, х. ч.

Калий роданистый по ГОСТ 4139 или аммоний роданистый по ГОСТ 27067, х. ч., раствор концентрации 0,1 г/см³ и 0,01 г/см³.

Кальций углекислый по ГОСТ 4530, х. ч. или ч. д. а.

Метол по ГОСТ 25664, раствор концентрации 0,08 г/см³.

Спирт этиловый по ГОСТ 18300.

Спирт изобутиловый по ГОСТ 9536, х. ч.

Уголь активный осветляющий древесный по ГОСТ 4453.

Сернокислый цинк по ГОСТ 4174, х. ч. или ч. д. а., раствор концентрации 0,8 г/см3.

Фенолфталенн по ТУ 6-09-5360, 1 %-ный спиртовой раствор.

Вода дистиллированная по ГОСТ 6709.

Бумага фильтровальная лабораторная по ГОСТ 12026.

Фильтр обеззоленный диаметром 11 см (синяя лента).

Толуол по ГОСТ 5789, ч. д. а.

Гидроокись натрия по ГОСТ 4328, х. ч. или ч. д. а., раствор концентрации 4 и 10 моль/дм³.

3. ПОДГОТОВКА К ИСПЫТАНИЮ

3.1. Бараночные изделия и сухари измельчают на лабораторной мельнице так, чтобы весь размолотый продукт прошел при просейвании через решетное полотно с отверстиями диаметром 1.1 мм.

Хлебные изделия разрезают на четыре части по двум взаимно перпендикулярным направлениям. Затем берут две диаметрально противоположные четверти, которые разрезают ножом на небольшие ломтики. Последние пропускают через мясорубку или тщательно измельчают ножом.

Измельченную пробу тщательно перемешивают.

3.2. Приготовление основного стандартного раствора никотиновой кислоты

Навеску никотиновой кислоты массой 0,050 г помещают в мерную колбу вместимостью 500 см³, добавляют 300 см³ дистиллированной воды и 5 см³ раствора серной кислоты концентрации 2,5 моль/дм³.

После растворения никотиновой кислоты объем полученного раствора доводят дистиллированной водой до метки и тщательно перемешивают, затем переносят в склянку из темного стекла с притертой пробкой и добавляют 0,5 см³ толуола.

Концентрация основного стандартного раствора никотиновой кислоты составит 100 мкг/см3.

Раствор хранят в склянке из темного стекла в холодильнике не более 3 мес.

- 3.3. Приготовление рабочего стандартного раствора никотиновой кислоты
- 3—5 см³ основного стандартного раствора никотиновой кислоты помещают в химический стакан и выдерживают до приобретения раствором комнатной температуры.
- 2 см³ основного стандартного раствора никотиновой кислоты помещают в мерную колбу вместимостью 100 см³; объем раствора доводят дистиллированной водой до метки и тщательно перемещивают.

Концентрация рабочего стандартного раствора никотиновой кислоты составит 2,0 мкг/см3.

Раствор готовят в день проведения анализа.

3.4. Приготовление бромной воды

В темную склянку с притертой пробкой наливают 100 см³ дистиллированной воды, добавляют под тягой 5—6 см³ брома, хорошо встряхивают и оставляют под тягой на 3—5 сут для лучшего насыщения воды бромом.

3.5. Приготовление роданбромидного раствора

К охлажденной в течение 30 мин в емкости со льдом бромной воде, взятой в объеме 30 см³, по каплям приливают охлажденный раствор роданистого калия или роданистого аммония концентрации 0,1 г/см³ до приобретения им соломенно-желтой окраски. Затем так же по каплям приливают те же растворы концентрации 0,01 г/см³ до полного обесцвечивания бромной воды.

К обесцвеченному раствору постепенно добавляют небольшими порциями углекислый кальций до прекращения выделения пузырьков газа.

Образующийся при этом осадок удаляют путем фильтрации в склянку из темного стекла с притертой пробкой, помещенную в ледяную баню.

Все операции проводят под тягой.

Раствор готовят непосредственно перед употреблением.

3.6. Приготовление раствора метола

Навеску перекристаллизованного метола массой 8,0 г вносят в мерную колбу вместимостью 100 см³ и доводят объем до метки раствором соляной кислоты концентрации 0,5 моль/дм³.

Концентрация раствора метола составит 0,08 г/см3.

Раствор готовят непосредственно перед употреблением.

3.6.1. Перекристаллизация метола

Раствор серной кислоты концентрации 0,05 моль/дм³ в объеме 500 см³ наливают в химический стакан вместимостью 1000 см³ и нагревают до кипения. Затем добавляют навеску метола массой 100 г и снова доводят до кипения. Если раствор сильно окрашен, то к нему добавляют навеску активного угля массой 10 г, перемешивают и сразу фильтруют через воронку Бюхнера, предварительно нагретую кипящей водой, в химический стакан вместимостью 2000 см³.

К фильтрату добавляют 700 см³ этилового спирта и перемешивают. Затем стакан помещают в ледяную баню и оставляют в темноте на 4—5 ч или на ночь в холодильнике. Выпавшие кристаллы отделяют фильтрованием на воронке Бюхнера, промывают их охлажденным этиловым спиртом 3—4 порциями по 30—40 см³. Осадок переносят на лист фильтровальной бумаги и высушивают на воздухе в темном помещении при комнатной температуре.

Перекристаллизованный метол хранят в склянке из темного стекла с притертой пробкой в защищенном от света месте при комнатной температуре.

3.7. Приготовление водной суспензии гидроксида кальция (известкового молочка)

В фарфоровый стакан вместимостью 2000 см³ вносят навеску окиси кальция массой 25 г, добавляют 500 см³ дистиллированной воды и перемешивают стеклянной палочкой.

Полученный раствор известкового молочка хранят в склянке с притертой пробкой.

4. ПРОВЕДЕНИЕ ИСПЫТАНИЯ

- Никотиновую кислоту определяют в двух параллельных навесках продукта.
- 4.2. Гидролиз
- 4.2.1. Гидролиз осуществляют с помощью известкового молочка или серной кислоты (кислотный гидролиз).
- 4.2.1.1. При гидролизе с известковым молочком навеску продукта массой 5,0 г* помещают в колбу вместимостью 250 см³, добавляют 10 см³ известкового молочка и перемешивают стеклянной палочкой. Затем добавляют 40 см³ дистиллированной воды и снова тщательно перемешивают.
- 4.2.1.2. При кислотном гидролизе навеску продукта массой 5,0 г° помещают в колбу вместимостью 250 см³, добавляют 40 см³ раствора сериой кислоты концентрации 1,0 моль/дм³ и тщательно перемешивают.
- 4.2.2. Гидролиз осуществляют на кипящей водяной бане в течение 40 мин, закрыв горло колбы воронкой.

По окончании гидролиза колбу охлаждают до комнатной температуры и доводят общий объем гидролизата до 75 см³ дистиллированной водой. Содержимое колбы перемешивают и выдерживают в холодильнике не менее 10—12 ч.

Охлажденный гидролизат фильтруют или центрифугируют.

^{*} Масса навески должна обеспечить концентрацию никотиновой кислоты в измеряемом растворе в диапазоне 2.0-5.0 мкг/см³, что при данных навеске и разведениях будет соответствовать содержанию никотиновой кислоты в продукте 3.0-7.5 мг/100 г.

Затем 30 см³ фильтрата помещают в цилиндр вместимостью 50 см³, добавляют к нему 1—2 капли 1 %-ного раствора фенолфталенна и нейтрализуют при кислотном гидролизе раствором гидроокиси натрия концентрации 10 моль/дм3, при гидролизе с известковым молочком — раствором серной кислоты концентрации 2,5 моль/дм³ до слабо-розового окрашивания:

Нейтрализованный раствор фильтрата охлаждают.

4.3. Очистка нейтрализованного фильтрата.

В цилиндр с нейтрализованным фильтратом вносят 2 см3 раствора сернокислого цинка концентрации 0,8 г/см³, добавляют по каплям раствор гидроокиси натрия концентрации 4 моль/дм³ до получения слабо-розового окрашивания. Содержимое цилиндра тщательно перемешивают стеклянной палочкой, розовое окрашивание удаляют несколькими каплями раствора серной кислоты концентрации 2,5 моль/дм3. Полученный раствор оставляют на 10 мин, периодически перемешивая, затем добавляют 1-2 капли изобутилового или этилового спирта (для устранения пены) и доводят объем до 50 см3 дистиллированной водой. Затем раствор перемешивают и фильтруют в колбу вместимостью 100 см³ с притертой пробкой.

При необходимости на этом этапе анализ можно прервать на 3-5 сут, сохраняя фильтрат в хо-

4.4. Проведение цветной реакции

Цветную реакцию проводят в восьми пробирках с притертыми пробками вместимостью 20-25 см³:

в одну пробирку вносят 5 см3 дистиллированной воды (контрольный раствор на реактивы);

в три пробирки вносят по 5 см³ рабочего стандартного раствора никотиновой кислоты;

в четыре пробирки вносят по 5 см³ очищенного фильтрата испытуемой пробы.

Все восемь пробирок на 5 мин помещают в водяную баню при температуре 50 °C, после чего в две пробирки с очищенным фильтратом вносят по 2 см3 дистиллированной воды (контрольные растворы на присутствие окрашенных и способных реагировать с метолом веществ), а во все остальные пробирки — по 2 см3 роданбромидного раствора (из бюретки под тягой). Все пробирки закрывают пробками, встряхивают и помещают в водяную баню при температуре 50 °C на 10 мин. По истечении этого времени пробирки вынимают, охлаждают под струей воды до комнатной температуры и ставят на 10 мин в темное место при комнатной температуре. Затем в каждую из пробирок приливают по 3 см3 раствора метола, энергично встряхивают и оставляют на 1 ч в темном месте при комнатной температуре. По истечении этого времени приступают к измерению оптической плотности растворов. Если растворы мутные, то перед измерением оптической плотности их фильтруют через плотный бумажный фильтр.

4.5. Измерение оптической плотности

Оптическую плотность растворов, полученных по п. 4.4, измеряют по отношению к дистиллированной воде на спектрофотометре с длиной волны 400 нм или фотоэлектроколориметре со светофильтром с длиной волны 400-425 нм.

5. ОБРАБОТКА РЕЗУЛЬТАТОВ

Массовую долю никотиновой кислоты (X) в мг на 100 г продукта вычисляют по формуле

$$X = \frac{(A - A_1) \cdot X_1 \cdot V \cdot V_2}{(B - B_1) \cdot m \cdot V_1 \cdot V_3 \cdot 10} \quad \text{или} \quad X = \frac{(A - A_1) \cdot 25}{(B - B_1) \cdot m},$$

где A — оптическая плотность испытуемого раствора, среднее из двух параллельных определений, ед. прибора;

А, - оптическая плотность контрольного раствора на окрашенные и аминореагирующие вещества, среднее из двух параллельных определений, ед. прибора;

В - оптическая плотность стандартного раствора никотиновой кислоты, среднее из трех параллельных определений;

В₁ — оптическая плотность контрольного раствора на реактивы;

X₁ — массовая доля никотиновой кислоты в измеряемом стандартном растворе никотиновой кислоты, мкг;

т — масса пробы продукта, взятая для анализа, г;

V — общий объем гидролизата, см³;

 V_1 — объем гидролизата, взятый на очистку, см³; V_2 — объем очищенного фильтрата, см³;

C. 5 FOCT 29140-91

- V_3 объем очищенного фильтрата, взятый для проведения цветной реакции, см³;
- 10 коэффициент пересчета из мкг/г в мг/100 г продукта;
- 25 коэффициент, включающий постоянные величины: $X_1 = 10$ мкг; V = 75 см³; $V_1 = 30$ см³; $V_2 = 50$ см³; $V_3 = 5$ см³ и коэффициент пересчета равен 10.
- Бычисления проводят до второго десятичного знака с последующим округлением до первого десятичного знака.

Полученный результат должен быть в диапазоне 3,0—7,5 мг/100 г продукта. В противном случае анализ повторяют с уточненной навеской продукта (см. пп. 4.2.1.1 и 4.2.1.2).

- 5.3. За окончательный результат испытания принимают среднеарифметическое значение (\overline{X}) результатов двух параллельных определений, допускаемое расхождение (d) между которыми в мг/100 г не должно превышать $0.14 \ \overline{X}$.
- 5.4. При контрольных определениях допускаемое расхождение (D) между контрольным и первоначальным определениями в мг/100 г не должно превышать $0.36 \ \overline{X} \ (\overline{X}$ среднеарифметическое значение результатов контрольного и первоначального определений).

При контрольном определении за окончательный результат испытания принимают результат первоначального определения, если расхождение между результатами контрольного и первоначального определений не превышает допускаемого значения; если расхождение превышает допускаемое значение, то за окончательный результат испытаний принимают результат контрольного определения.

ИНФОРМАЦИОННЫЕ ДАННЫЕ

1. РАЗРАБОТАН И ВНЕСЕН ВНПО «Зернопродукт»

РАЗРАБОТЧИКИ

- Г.С. Зелинский, канд. техн. наук; К.А. Чурусов, канд. техн. наук (руководитель темы); А.Ф. Шухнов, канд. техн. наук; А.М. Каменецкая, канд. техн. наук; Н.А. Игорянова, канд. техн. наук; А.И. Быстрова; Л.И. Гусева, канд. биол. наук; Е.Н. Степанова, канд. с.-х. наук
- УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Постановлением Комитета стандартизации и метрологии СССР от 29.11.91 № 1835

3. ВВЕДЕН ВПЕРВЫЕ

4. ССЫЛОЧНЫЕ НОРМАТИВНО-ТЕХНИЧЕСКИЕ ДОКУМЕНТЫ

Обозначение НТД, на который дана ссылка	Номер раздела; пункта	Обозначение НТД, на который дана ссылка	Номер раздела, пункта
FOCT 1770—74	2;	ΓΟCT.867776	2
FOCT 3118-77	2	FOCT 9147-80	2
FOCT 402595	2	FOCT 9536-79	2
COCT 4109-79	2	ΓΟCT 12026-76	. 2
OCT 4139-75	2	FOCT 18300-87	-2
OCT 4174-77	2	FOCT 21400-75	2
OCT 4204-77	2	ΓΟCT 25336-82	2
OCT 4328-77	2	ГОСТ 25664-83	2
OCT 4453-74	2	ΓΟCT 27067-86	.2
OCT 4530-76	2	FOCT 27668-88	1.1
OCT 5667-65	1.2	FOCT 2922791	.2
OCT 5789-78	2.	FOCT 29251-91	2
OCT 6709-72	2	ФС 42-2357-85	2
OCT 7128-91	1.4	TY 6-09-5360-87	2
OCT 8494-96	1.3	TY 23.2.2068-89	. 2

5. ПЕРЕИЗДАНИЕ

