СРЕДЫ ПИТАТЕЛЬНЫЕ ПЛОТНЫЕ (ДЛЯ ВЕТЕРИНАРНЫХ ЦЕЛЕЙ)

ОБЩИЕ ТЕХНИЧЕСКИЕ УСЛОВИЯ

Издание официальное

 $E3\ 12-2003$

ИПК ИЗДАТЕЛЬСТВО СТАНДАРТОВ Москва УДК 576.8:006.354 Группа Р35

МЕЖГОСУДАРСТВЕННЫЙ СТАНДАРТ

СРЕДЫ ПИТАТЕЛЬНЫЕ ПЛОТНЫЕ (ДЛЯ ВЕТЕРИНАРНЫХ ЦЕЛЕЙ)

Общие технические условия

ΓΟCT 29112--91

Solid culture media (for veterinary aims). Specifications

MKC 11.220 ΟΚΠ 93 8880

Дата введения 01.10.92

Настоящий стандарт распространяется на плотные питательные среды: агар мясопептонный (МПА), агар Хоттингера, агар печеночный, агар Сабуро, сусло-агар, предназначенные для выращивания микроорганизмов.

Требования и нормы, установленные в стандарте, являются обязательными.

1. ТЕХНИЧЕСКИЕ ТРЕБОВАНИЯ

1.1. Характеристики

- 1.1.1. Плотные питательные среды должны изготовляться в соответствии с требованиями настоящего стандарта по ГОСТ 10444.1 или технологическим инструкциям (регламентам), утвержденным в установленном порядке.
- 1.1.2. Плотные питательные среды по физико-химическим, биохимическим и биологическим показателям должны соответствовать требованиям и нормам, указанным в табл. 1.

Таблица 1

Наименование показателя	Характеристика и норма				
	МПА	Агар Хоттингера	Агар печеночный	Агар Сабуро	Сусло-вгар
Внешний вид	При 20 °C — гель без посторонних включений				
Цвет, %, не менее	-60	40	10	40	40
Прозрачность, %, не менее	50	50	40	-50	40
Прочность геля, т, не менее	200	200	110	.110	200
Массовая доля аминного азота, $\%$, не менее	0,06	0,12	0,06		_
Массовая доля полипептидов, %, не менее	1,4	1,2	f,2	1,0	_
Массовая доля ўглеводов, %, не менее	-		_	_	6,0
Концентрация водородных: ионов (pH)	7,2—7,6	7,2—7,6	7,2—7,4	6,4—7,0	6,4—7,0

Издание официальное

Перепечатка воспрещена

© Издательство стандартов, 1992

© ИПК Издательство стандартов, 2004

Наименование показателя	Характеристика и норма				
	МПА	Агар Хоттингера	Агар печеночный	Агар Сабуро	Сусло-агар
Массовая доля хлоридов в пересчете на хлор-ион, %	0,8 ± 0,1		_		_
pNa	0,82-0,98		_		-
Стерильность	Должны быть стерильными				
Способность обеспечивать рост тест-штаммов микроорганизмов (оп- тическая плотность), не менее:					
Staphylococcus aureus «Лоссманов»	0,5	0,8	0.3	_	_
Escherichia coli 675	0,4	0,6	0,5		-
Corynebacterium diphtheroides, 1911	0,4	0,7	0,3	_	-
Shigella flexneri, 1a 8516	0,2	0,4	0,2	_	-

П р и м е ч а н и е. При проверке содержания хлорида натрия в плотных питательных средах определяют только один показатель: массовую долю хлоридов или pNa.

1.2. Упаковка

- 1.2.1. Плотные питательные среды стерильно расфасовывают в стеклянные бутыли по ГОСТ 10782 вместимостью 2,5 дм³, флаконы по ТУ 10—09—202 вместимостью 100, 200, 500 см³ или матровые колбы из расчета $^{2}/_{3}$ объема колбы.
- 1.2.2. Бутыли закрывают стерильными резиновыми пробками, сверху завязывают пергаментной бумагой по ГОСТ 1341. Флаконы закрывают резиновыми пробками по ТУ 38—106—293 и закрывают алюминиевыми колпачками по ОСТ 64—009.
- 1.2.3. Стеклянные бутыли со средой упаковывают в ящики из пенополистирола по ТУ 10—09—30, флаконы обертывают алигнином по ГОСТ 12923, в холодное время года ватой или другими тепло-изоляционными материалами и упаковывают в дощатые ящики по ГОСТ 10131, обеспечивающие неподвижность и целостность флаконов, массой брутто не более 20 кг.
- 1.2.4. Внутрь каждого ящика вкладывают этикетку с указанием наименования предприятияизготовителя, наименования препарата, его количества в ящике, номера серии, номера контроля, даты упаковки, срока годности, номера или фамилии упаковщика.

1.3. Маркировка

1.3.1. На бутыли и флаконы наклеивают бумажные этикетки с указанием:

наименования предприятия-изготовителя и его товарного знака;

наименования препарата;

количества препарата в бутыли (флаконе);

«стерильно»;

номера серии;

номера контроля;

даты изготовления;

срока годности:

условий хранения;

обозначения настоящего стандарта.

1.3.2. На каждое грузовое место (ящик) наносят транспортную маркировку по ГОСТ 14192 с указанием манипуляционных знаков «Хрупкое. Осторожно», «Беречь от солнечных лучей» и предупредительные надписи «Биопрепараты», «Беречь от мороза».

Маркировка, характеризующая упакованную продукцию, должна содержать следующие панные:

наименование предприятия-изготовителя и его товарный знак;

наименование препарата, его количество в ящике;

номер серии;

дату изготовления;

срок годности;

условия хранения;

массу брутто.

Совмещение транспортной маркировки и маркировки, характеризующей данные об упакованной продукции, на одной стороне транспортной тары не допускается.

2. ПРИЕМКА

- Плотные питательные среды принимают сериями. Под серией понимают определенное количество плотной питательной среды, изготовленное за один технологический цикл, одновременно расфасованное, оформленное документом о качестве с указанием номера контроля.
- Каждая серия плотных питательных сред на предприятии-изготовителе должна быть проверена ОБК (ОТК) предприятия-изготовителя.
- Для контроля качества среды делают выборку (n) из разных мест серии в количестве, рассчитанном по формуле

$$n = 0.4 \cdot \sqrt{N}$$
.

где N- число упаковок в серии.

- Контроль качества среды по требованию потребителя проводит профильная лаборатория ВГНКИ ветпрепаратов.
- Контроль питательных сред, выпускаемых объемом менее 50 дм³, по показателю «Способность обеспечивать рост тест-штаммов микроорганизмов» проводят от каждой пятой серии.
- 2.6. При получении неудовлетворительных результатов испытаний хотя бы по одному из показателей по нему проводят повторные испытания на удвоенном количестве среды. Результаты повторных испытаний распространяют на всю серию.

3. МЕТОДЫ ИСПЫТАНИЯ

3.1. Отбор проб

Из каждой единицы выборки (бутылей) стеклянной трубкой в стерильных условиях отбирают разовые пробы (сверху, из середины, снизу). Предварительно среду расплавляют в водяной бане.

Объединенную пробу объемом 1200 см³ делят пополам. Одну часть используют для контроля, другую хранят на предприятии в течение срока годности на случай разногласий.

Из каждой единицы выборки флаконов отбирают 6—10 флаконов со средой. Одну часть флаконов (3—5 шт.) используют для контроля, вторую оставляют на предприятии в течение срока голности.

3.2. Определение внешнего вида

Внешний вид определяют визуально в проходящем свете.

3.3. Определение цвета и прозрачности среды

3.3.1. Аппаратура и материалы

Баня воляная.

Колбы конические по ГОСТ 25336.

Холодильник стеклянный лабораторный по ГОСТ 25336.

Пробки ватно-марлевые с бумажными колпачками,

Элемент нагревательный (горелка, плитка).

Фотоэлектроколориметр.

Вода дистиллированная по ГОСТ 6709.

3.3.2. Проведение испытания

Плотную питательную среду расплавляют в водяной бане в колбе с обратным холодильником или во флаконе с ватно-марлевой пробкой и пергаментным колпачком.

Расплавленную плотную питательную среду наливают в кювету фотоэлектроколориметра с рабочей длиной 5 мм и оставляют на 10-15 мин до застудневания.

Цвет определяют на фотоэлектроколориметре при синем светофильтре (длина волны 400—440 нм), прозрачность — при желто-оранжевом (580—600 нм) против воды, используемой в качестве оптического контроля.

C. 4 FOCT 29112-91

3.4. Определение прочности геля

3.4.1. Аппаратура и материалы

Весы технические.

Прибор Валента.

Стаканчики металлические или толстостенные стеклянные вместимостью 30 см³ (высотой 24 мм, диаметром 40 мм).

Сосуд с плоским дном (кристаллизатор),

Термометр стеклянный лабораторный

Стаканы и колбы стеклянные лабораторные по ГОСТ 25336.

Песок кварцевый.

3.4.2. Проведение испытаний

200 см³ плотной питательной среды, расплавленной, как указано в п. 3.3.2, разливают в 5 стаканчиков вместимостью 30 см³. Стаканчики с горячей питательной средой ставят в горизонтально установленный сосуд с плоским дном, наполненный водой до 20 °C, уровень которой выше уровня раствора в стаканчиках. Стаканчики со средой выдерживают 1 ч при 20 °C, поддерживая температуру добавлением в сосуд при размешивании холодной или теплой воды.

Далее определение проводят по ГОСТ 26185.

3.5. Определение аминного азота

3.5.1. Аппаратура, материалы и реактивы

рН-метр; иномер ЭВ-74 или другой прибор того же назначения.

Весы ВЛР-500 или другие весы того же класса точности.

Стаканы и колбы лабораторные по ГОСТ 25336.

Пипетки, бюретки по ГОСТ 29227, ГОСТ 29251.

Формалин технический по ГОСТ 1625.

Фенолфталеин, 1 %-ный спиртовой раствор.

Натрия гидрат окиси по ГОСТ 4328, раствор концентрации c (1 NaOH) = 0,1 моль/дм³.

Кислота серная по ГОСТ 4204, раствор концентрации $c(^{1}/, H_{2}SO_{4}) = 0.1$ моль/дм³.

Вода дистиллированиая по ГОСТ 6709.

3.5.2. Подготовка к испытанию

Приготовление формольной смеси: к 50 см³ отфильтрованного формалина добавляют 1 см³ 1 %-ного раствора фенолфталенна и доводят окраску смеси до слабо-розовой добавлением раствора гидрата окиси натрия c (1 NaOH) = 0,1 моль/дм³.

Плотную питательную среду, расплавленную, как указано в п. 3.3.2, охлаждают до 40—50 °C и берут навеску массой 10 г на технических весах с точностью 0,01 г в стеклянный сосуд вместимостью 100—200 см³. Добавляют дистиллированную воду температурой 40—50 °C до массы разведения 50 г и перемешивают.

10 см³ разведения переносят в широкий низкий стаканчик для рН-метрии, добавляют дистиллированную воду для достаточного погружения электродов в раствор. Доводят рН раствора до 7,0 путем добавления нескольких капель раствора серной кислоты или гидроокиси натрия.

Добавляют 2 см³ формольной смеси, при этом pH сдвигается в связи с образованием свободных карбоксильных групп, которые оттитровывают раствором гидроксида натрия концентрации c (1 NaOH) = 0,1 моль/дм³. Титрование проводят до pH 8,5.

3.5.3. Обработка результатов

Содержание аминного азота в плотной питательной среде (X) в процентах вычисляют по формуле

$$X = \frac{V_1 \cdot K \cdot 0,0014 \cdot 100 \cdot 5}{V_2} \; ;$$

где V₁— объем раствора гидроксида натрия, используемый на титрование испытуемой пробы, см³;

 К — поправочный коэффициент к титру раствора гидроксида натрия концентрации с (1 NaOH) = = 0,1 моль/дм³;

5 — коэффициент разведения;

 V_2 — объем разведения среды, используемый для анализа, см³;

0,0014 — количество азота, соответствующее I см³ раствора гидроксида натрия концентрации c (I NaOH) = 0,I моль/дм³;

100 — пересчет на 100 см³ среды.

3.6. Определение содержания полипентидов

3.6.1. Аппаратура, материалы и реактивы

Фотоэлектроколориметр или спектрофотометр.

Пробирки центрифужные.

Пипетки по ГОСТ 29227.

Центрифуга настольная типа ОПн-8-14.

Натрия гидрат окиси по ГОСТ 4328, 10 %-ный раствор.

Медь сернокислая по ГОСТ 4165, 2 %-ный раствор.

Вода дистиллированная по ГОСТ 6709.

3.6.2. Подготовка к испытанию

3.6.2.1. Построение калибровочного графика

Для построения калибровочного графика по оси абсцисе откладывают концентрацию полипептидов в процентах; по оси ординат — оптическую плотность раствора согласно данным, приведенным в табл. 2.

Таблица 2

Концентрация подинентидов, %	Оптическая плотность
0,1	0,14
0,2	0,26
0,3	0,37
0,4	0,49

3.6.3. Проведение испытания

Из раствора, приготовленного по п. 3.5.3, отбирают по 5 см³ в 2 центрифужные пробирки, добавляют 0,5 см³ 10 %-ного раствора гидроксида натрия и 0,5 см³ 2 %-ного раствора сернокислой меди. Смесь хорошо перемешивают после добавления каждого реактива.

Параллельно ставят контрольную пробу на реактивы: вместо 5 см³ разведения плотной питательной среды берут 5 см³ воды. Пробы центрифугируют с частотой вращения 5000—6000 мин⁻¹ по 10 мин.

Интенсивность окраски измеряют на фотоэлектроколориметре или спектрофотометре при 540 нм в кюветах с рабочей длиной 10 мм против контрольной пробы.

3.6.4. Обработка результатов

Концентрацию полипептидов в плотной питательной среде определяют по калибровочному графику. Полученное значение умножают на 5 (разведение исходной среды).

За окончательный результат испытания принимают среднее арифметическое результатов двух параллельных определений, допустимые расхождения между которыми не должны превышать 5 %.

3.7. Определение массовой доли углеводов

3.7.1. Аппаратура, материалы и реактивы

Весы ВЛР-500 или другие весы того же класса точности.

Колбы конические с притертыми пробками по ГОСТ 25336.

Пипетки, бюретки по ГОСТ 29227, ГОСТ 29251.

Йод по ГОСТ 4159, раствор концентрации c (1J) = 0,1 моль/дм³.

Натрия тиосульфат по ГОСТ 27068, раствор концентрации c (1 Na₂S₂O₃ · 5 H₂O) = 0.1 моль/дм³.

Крахмал растворимый по ГОСТ 10163, раствор с массовой долей 1 %.

Натрия гидрат окиси по ГОСТ 4328, раствор с массовой долей 10 %.

Кислота серная по ГОСТ 4204, раствор с массовой долей 10 %.

Вода дистиллированная по ГОСТ 6709 или деминерализованная.

3.7.2. Проведение испытания

Плотную питательную среду расплавляют в водяной бане, как указано в п. 3.3.2, охлаждают до 40—50 °C и берут навеску массой 5 г на технических весах с точностью до 0,01 г в стеклянный сосуд вместимостью 100—200 см³. Добавляют 40 см³ дистиллированной воды температурой 40—50 °C.

 10 см^3 разведения переносят в коническую колбу с притертой пробкой, добавляют 10 см^3 раствора йода концентрации c (1J) = 0,1 моль/дм³. Туда же вносят 1 см^3 10 %-ного раствора натрия гидрата окиси. Оставляют стоять в темноте на 5 мин. Затем добавляют в колбу $1,5 \text{ см}^3$ 10 %-ного раствора серной кислоты. Выделившийся йод оттитровывают раствором тиосульфата натрия концентрации c ($1 \text{ Na}_2 \text{S}_2 \text{O}_3 \cdot 5 \text{ H}_2 \text{O}$) = $0,1 \text{ моль/дм}^3$ до обесцвечивания (индикатор — крахмал).

C. 6 FOCT 29112-91

3.7.3. Обработка результатов

Содержание массовой доли углеводов в плотной питательной среде (X_1) в процентах вычисляют по формуле

$$X_1 = \frac{(V_1 - V_2) \cdot 0.009008 \cdot 10 \cdot 100}{10}$$

где V_1 — объем раствора йода концентрации точно 0,1 моль/дм³, используемый для титрования, см³;

 V_2 — объем раствора тиосульфата натрия концентрации точно 0,1 моль/дм³, используемый на титрование, см³;

0,009008 — масса глюкозы, соответствующая 1 см³ раствора йода концентрации точно 0,1 моль/дм³, г;

10 — коэффициент разведения;

10 — объем разведения среды, используемый для анализа, см³;

100 — пересчет на 100 см³ среды.

3.8. Определение концентрации водородных ионов (рН)

3.8.1. Аппаратура, материалы и реактивы

рН-метр, иономер ЭВ-74 или другой прибор того же класса точности,

Стаканчик стеклянный вместимостью 50—100 см³ по ГОСТ 23932.

Растворы стандартные буферные pH 4,0 и 9,18 по ГОСТ 8.135.

Вода дистиллированная по ГОСТ 6709 или деминерализованная.

3.8.2. Подготовка к испытанию

Настраивают pH-метр по буферным растворам pH 4,0 и 9,18 в соответствии с инструкцией к прибору при температурах (20 ± 5) и (40 ± 5) °C.

3.8.3. Проведение испытания

Плотную питательную среду помещают в стаканчик для pH-метрии, погружают в нее электроды и снимают показания при температуре (20 ± 5) °C.

В стаканчик для pH-метрии наливают расплавленную плотную питательную среду (см. п. 3.3.2), доводят температуру до (40 ± 5) °C, опускают в нее электроды и снимают показания с поправкой на температуру.

3.9. Определение хлоридов в плотной питательной среде

3.9.1. Аппаратура, материалы и реактивы

рН-метр, иономер ЭВ-74 или другой прибор того же назначения.

рNа-вый электрод (ЭСЛ-51Г или другой прибор того же назначения).

Натрия хлорид по ГОСТ 4233, растворы концентрации с (1 NaCl) 0,1 и 1 моль/дм³.

Стаканчик стеклянный вместимостью 50-100 см3 по ГОСТ 23932.

Колбы стеклянные вместимостью 100-200 см3 или стаканы по ГОСТ 1770.

Пипетки вместимостью 1, 2, 10, 20 и 25 см³ по ГОСТ 29227.

Бюретки по ГОСТ 29251.

Кислота азотная концентрированная по ГОСТ 701.

Серебро азотнокислое по ГОСТ 1277, раствор концентрации c (1 AgNO₃) = 0,1 моль/дм³.

Калий роданистый по ГОСТ 4139 или аммоний роданистый, раствор концентрации 0,1 моль/дм³.

Квасцы железоаммонийные, насыщенный раствор.

Элемент нагрева (горелка, плитка).

Вода дистиллированная по ГОСТ 6709 или деминерализованная.

3.9.2. Проведение испытания

3.9.2.1. Определение рNa

Настраивают рН-метр (иономер) по растворам клорида натрия концентраций с (1 NaCl) = 0,1 моль/дм³ и 1 моль/дм³ с рNа-вым электродом в соответствии с инструкцией, прилагаемой к прибору.

3.9.2.2. Определение массовой доли хлоридов

В стеклянный стаканчик помещают плотную питательную среду при температуре (20 ± 5) °C, погружают в нее электроды и снимают показания прибора (pNa).

В стеклянную колбу или стакан вместимостью 100—200 см³ на технических весах берут навеску 2 г при 40—50 °C плотной питательной среды, предварительно расплавленной, как указано в п. 3.3.2, добавляют 20 см³ дистиллированной воды при той же температуре и перемешивают. Добавляют 1 см³ концентрированной азотной кислоты и 10 см³ раствора азотнокислого серебра. Полученную смесь нагревают до начала кипения и быстро охлаждают путем погружения колбы или стакана в сосуд с водой комнатной температуры. После охлаждения к смеси добавляют 2 см³ насыщенного раствора железоаммонийных квасцов и титруют раствором роданистого калия (или роданистого аммония) концентрации 0.1 моль/дм³ до появления желтовато-розового окращивания.

3.9.3. Обработка результатов

Массовую долю хлорида натрия (X_1) в процентах рассчитывают по формуле

$$X_2 = \frac{(V_{_1}K_{_1} - V_{_2}K_{_2}) \cdot 0.005845 \cdot 100}{V} \; ,$$

где V_1 — объем раствора азотнокислого серебра концентрации c (1 AgNO₃) = 0,1 моль/дм³, используемый при титровании;

К₁ — поправочный коэффициент к титру раствора азотнокислого серебра;

 V₂ — объем раствора роданистого калия (или роданистого аммония) концентрации 0,1 моль/дм³, используемый на титрование испытуемой пробы, см³;

К₂ — поправочный коэффициент к титру раствора роданистого калия (или роданистого аммония);

0,005845 — масса хлорида натрия, соответствующая 1 см³ раствора азотнокислого серебра концентрации c (1 AgNO₃) = 0,1 моль/дм³;

V — объем плотной питательной среды, используемый на анализ, см³;

За окончательный результат испытания принимают среднеарифметическое значение результатов двух парадлельных определений, допустимые расхождения между которыми не должны превышать 0.01 %.

Определение стерильности — по ГОСТ 28085.

3.11. Определение способности поддерживать рост микробов

3.11.1. Аппаратура, материалы и реактивы

Термостат с температурой нагрева (37 ± 1) °C.

Фотоэлектроколориметр.

Пипетки вместимостью 1, 2, 10 см³ по ГОСТ 29227, стерильные.

Пробирки стеклянные по ГОСТ 25336 с ватно-марлевыми пробками, стерильные.

Чашки Петри по ГОСТ 25336, стерильные.

Шпатель стеклянный, стерильный.

Среда МПБ (1:1) по ГОСТ 20730 в пробирках с ватно-марлевыми пробками, стерильная.

Пипетки пастеровские, стерильные.

Культуры тест-штаммов микроорганизмов: Staphylococcus aureus «Лоссманов», Escherichia coli, 675, Shigella flexneri, 1a 8516, Corynebacterium diphteroides, 1911.

Хлорид натрия по ГОСТ 4233, 0,85 %-ный раствор.

3.11.2. Подготовка к испытанию

3.11.2.1. Хранение и освежение культур

Культуры тест-штаммов хранятся в лиофилизированном состоянии в течение 2 лет или в нативном — на полужидком МПА (0,75 % агара) под ватно-марлевыми пробками, залитыми парафином, при температуре 4—6 °С в течение 3 мес. Для освежения культур из лиофилизированного состояния в ампулу в стерильных условиях добавляют 1 см³ МПБ и после растворения бактериальной массы переносят ее в пробирку с МПБ или бульоном Хоттингера, выдерживают в термостате в течение 4 ч, после чего пересевают в пробирки с МПБ по 0,2—0,3 см³ и культивируют в течение 18—20 ч при 37 °С. Из полужидкой среды пастеровской пипеткой набирают 0,2—0,3 см³ культуры, также делают посев в МПБ и культивируют при тех же условиях.

3.11.2.2. Для определения способности плотных питательных сред поддерживать рост микроорганизмов используют 18—20-часовую культуру тест-штаммов, если интенсивность роста бульонных культур соответствует нормам, приведенным в табл. 3.

Таблица 3

Тест-штам мы	Минимальные нормы интенсивности роста, ед. оптической плотности
Staphylococcus aureus Escherichia coli Shigella flexneri Corynebacterium diphteroides	0,4 0,5 0,15 0,12

C. 8 FOCT 29112-91

Интенсивность роста определяют по значению оптической плотности, измеряемому на фотоэлектроколориметре при длине волны 630—670 нм в кювете с рабочей длиной 5 мм.

- 3.11.2.3. Плотную питательную среду во флаконах кипятят в водяной бане до полного расплавления, остужают до 50—60 °С и стерильно разливают в 2—3 чашки Петри толщиной слоя не менее 0,4 см. Чашки оставляют до застудневания плотной питательной среды, затем помещают в термостат вверх дном на 16—24 ч.
 - 3.11.3. Проведение испытания
- В 2—3 чашки Петри с плотной питательной средой вносят 0,5 см³ 20-часовой бульонной культуры тест-штамма и равномерно распределяют по всей поверхности. Чашки закрывают и выдерживают в термостате при 37 °C в течение 24 ч.

Делают смыв культур с чашки Петри 10 см³ 0,85 %-ного раствора хлорида натрия (с этой целью можно использовать стеклянный шпатель или палочку с резиновым наконечником). Полученные суспензии разводят 1:10 (1 см³ смыва + 9 см³ 0,85 %-ного раствора хлорида натрия).

В разведениях определяют значение оптической плотности микробной суспензии на фотоэлектроколориметре с красным светофильтром (длина волны 630—670 нм) в кюветах с рабочей длиной 5 мм. В качестве оптического контроля используют физраствор.

4. ТРАНСПОРТИРОВАНИЕ И ХРАНЕНИЕ

- 4.1. Плотные питательные среды транспортируют всеми видами транспорта в соответствии с правилами перевозок скоропортящихся грузов, действующими на данном виде транспорта.
- 4.2. Плотные питательные среды хранят в закрытом сухом помещении. Температура хранения от 2 до 10 °C.

5. ГАРАНТИИ ИЗГОТОВИТЕЛЯ

Гарантийный срок хранения плотных питательных сред — 2 мес со дня изготовления.

ИНФОРМАЦИОННЫЕ ДАННЫЕ

- 1. РАЗРАБОТАН И ВНЕСЕН Государственным комитетом СССР по продовольствию и закупкам
- 2. УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Постановлением Комитета стандартизации и метрологии СССР от 30.09.01 № 1574
- 3. ВВЕДЕН ВПЕРВЫЕ
- 4. ССЫЛОЧНЫЕ НОРМАТИВНО-ТЕХНИЧЕСКИЕ ДОКУМЕНТЫ

5. ПЕРЕИЗДАНИЕ. Июль 2004 г.

Редактор М.Н. Максимова Технический редактор В.Н. Прусакова Корректор В.Е. Нестерова Компьютерная верстка И.А. Налейкиной

Изд. лиц. № 02354 от 14:07,2000. Сдано в.набор 30.06.2004. Подписано в печать 05:08.2004. Усл. печ.л. 1,40. Уч.-изд.л: 1,00. Тираж. 83 экс. С 3078. Зак. 684.

ИПК Издательство стандартов, 107076 Москва, Колодезный пер., 14.
http://www.standards.ru e-mail: info@standards.ru
Набрано в Издательстве на ПЭВМ
Отпечатано в филиале ИПК Издательство стандартов — тип. «Московский печатник», 105062 Москва, Лялин пер., 6.
Плр № 080102

