НАВОИ И СНОВАЛЬНЫЕ ВАЛЫ

МЕТОДЫ ОПРЕДЕЛЕНИЯ КЛАССА КАЧЕСТВА ФЛАНЦЕВ

Издание официальное

B3 10-200

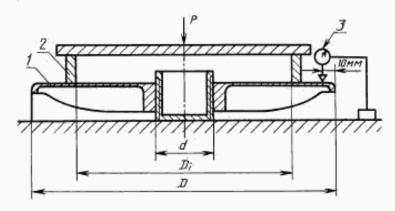
межгосударственный стандарт

НАВОИ И СНОВАЛЬНЫЕ ВАЛЫ

Методы определения класса качества фланцев

ΓΟCT 28477-90

Warper's and weaver's beams.


Methods for determination of quality class for flanges

MKC 59,120,30 OKCTY 5102

Дата введения 01.01.93

Настоящий стандарт распространяется на навои, секции навоев и сновальные валы и устанавливает методику определения класса качества фланцев в зависимости от степени их прогиба под нагрузкой.

1. Прогиб фланца 1 определяют на прессе при помощи испытательного кольца 2 под действием нагрузки P (черт. 1).

Т — фланец; 2 — испытательное кольцо; 3 — индикатор часового типа

Черт. 1

2. Внутренний диаметр испытательного кольца (Di) в миллиметрах определяют по формуле

$$D_i = 0.6 (D + d),$$

где D — наружный диаметр фланца, мм;

- d наружный диаметр ствола, мм.
- Фактический прогиб f фланца определяют как среднее значение из показаний трех индикаторов, расположенных один относительно другого под углом 120°.
 - Максимально допустимый прогиб фланцев (f_{max}) в миллиметрах определяют по формуле

$$f_{\text{max}} = 4(D - d) \cdot 10^{-3}$$
.

Издание официальное

Перепечатка воспрещена

Издательство стандартов, 1990
 Стандартинформ, 2006

C. 2 FOCT 28477-90

5. Максимально допустимый прогиб фланцев навоев (f_{max}) по ГОСТ 28476 в миллиметрах должен соответствовать значениям, указанным в табл. 1.

Таблица 1

. M M			
D _c	ä	D_i	J _{max} .
500	150	390	1,4
600		450	1,8
700		510	2,2
750		540	2,4
800		570	2,6
850	216	640	2,5
900		670	2,7
950		700	2,9
1000		730	3,1

 Максимально допустимый прогиб фланцев сновальных валов исполнений 1 и 2 (f_{max}) по ГОСТ 28479 в миллиметрах должен соответствовать значениям, указанным в табл. 2.

Таблица 2

, MM			
D.	·d	D _Č .	$f_{ m max}$
. 81.5		669	. 2,1
		(681)	2,0
915		729	2,5
		(741)	2,4
1015	300	789	2,9
	(320)	(801)	2,8
1100		840	3,2
		(852)	3,2
1200		900	3,6
		(912)	3,6

7. Максимально допустимый прогиб фланцев сновальных валов исполнения 3 ($f_{\rm max}$) по ГОСТ 28479 в миллиметрах должен соответствовать значениям, указанным в табл, 3.

Таблица 3.

, M M			
Ď	id	D_i	f_{\max}
800	(672) 300 (320) (320) (732) 780 (792)	660°	2,0
		(672)	2,0
(900)		720	2,4
		(320) (732)	2,4
1000		2,8	
		(792)	2,8
(0011)	360	876	3,0
1200	400	960	3,2

 Максимально допустимый прогиб фланцев секций навоев (f_{max}) по ГОСТ 21578 в миллиметрах должен соответствовать значениям, указанным в табл. 4.

Таблица 4

MN			
D	· d	D_1	fmax
355	911	279	0,1
535	185	432	1,4
7.65	250	609	2,1
815		639	2,3
.915	295	726	2,5
1015	360	825	2,6

9. Классы качества фланцев навоев, секций навоев и сновальных валов определяют по табл. 5, исходя из значения коэффициента K

$$K = \frac{P}{f} = \frac{4Eh^3}{cD^2},$$

где Е — модуль упругости материала фланца;

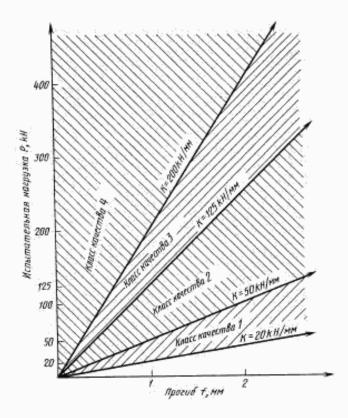
h — толщина фланца у ствола навоя, мм;

c — отношение d/D;

Р — нагрузка на фланец, кН;

f — прогиб фланца, мм.

Таблица 5


Класс качества	. Нити, рекомендуемые для намотки	Ограничение значений К, кН/мм
1 легкий	Нити из натуральных волокон, за исключением натурального шелка. Нити из смесей натуральных и химических волокон в соотноше- нии 67/33	20 ≤ K ≤ 50
2 средний	Нити из натурального шелка и стекловолокна. Нити из искусственных волокон (вискозных, полинозных, мед- но-аммиачных, ацетилцеллюлозных и др.)	50 ≤ K ≤ 125
3 сильный	Нити из синтетических волокон из растворов (поливинилхло- ридных, перхлорвиниловых (хлорин), поливинилепиртовых (ви- нол), полиакрилонитрильных (нитрон и др.)	125 ≤ K ≤ 200
4 сверхсильный	Нити из синтетических волокон из растворов (поликапромид- ных, полиэфирных (лавсан), полиэтиленовых, полипропиленовых и др.)	K > 200

10. Максимально допустимую нагрузку на фланец ($P_{\rm max}$) в килоньютонах определяют по формуле

$$P_{\text{max}} = K f_{\text{max}}$$
.

 Диаграмма для определения класса качества фланцев навоев, секций навоев и сновальных валов приведена на черт. 2.

C. 4 FOCT 28477-90

Черт. 2

ИНФОРМАЦИОННЫЕ ДАННЫЕ

- 1. УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Постановлением Государственного комитета СССР по управлению качеством продукции и стандартам от 26.03.90 № 567
- Стандарт соответствует международному стандарту ИСО 8116-4—85 в части основных требований табл. 1—5
- 3. ВВЕДЕН ВПЕРВЫЕ

4. ССЫЛОЧНЫЕ НОРМАТИВНО-ТЕХНИЧЕСКИЕ ДОКУМЕНТЫ

Обозначение НТД, на который дана ссылка	Номер пункта
FOCT 2157876	.8
FOCT 2847690	.5
FOCT 2847990	.6, 7

5. ПЕРЕИЗДАНИЕ. Ноябрь 2005 г.

Редактор М.И. Максимова
Технический редактор О.И. Власова
Корректор Т.И. Кононенко
Компьютерная нерстка В.И. Грищенко

Сдано в набор 19.10.2005. Подписано в печать 26.12.2005, Формат 60х84¹/₈. Бумага офсетная. Гарнятура Таймс., Печать офсетная. Усл. печ. л. 0,93. Уч.-изд.л. 0,40. Тираж 39 экз. Зак. 268. С 2295.

ФГУП «Стандартинформ», 123995 Москва, Гранатный пер., 4. www.gostinfo.ru info@gostinfo.ru Набрано и отпечатано во ФГУП «Стандартинформ»

