МЕЖГОСУДАРСТВЕННЫЙ СТАНДАРТ

УСТАНОВКИ ДИСТИЛЛЯЦИОННЫЕ ОПРЕСНИТЕЛЬНЫЕ СТАЦИОНАРНЫЕ

Методы химического анализа соленых вод и дистиллята на содержание газов

ГОСТ 26449.3—85

Stationary distillation desalting units. Methods of saline water and distillate chemical analysis on gas content

MKC 13.060.50; 71.040.40 OKCTY 3614

Постановлением Государственного комитета СССР по стандартам от 15 ноября 1985 г. № 3612 дата введения установлена

01.01.87

Настоящий стандарт устанавливает методы химического анализа соленых вод и дистиллята на контролируемые газообразные компоненты.

Подготовка аппаратуры, реактивов, растворов и общие требования к отбору проб и проведению анализа — по ГОСТ 26449.0—85.

1. МЕТОДЫ ОПРЕДЕЛЕНИЯ КИСЛОРОДА

1.1. Колориметрический метод с использованием сафранина T

1.1.1. Сущность метода

Кислород, содержащийся в исследуемом растворе, образует с сафранином *T*, восстановленным амальтамированным цинком, окрашенное в красный цвет соединение. Массовую концентрацию кислорода определяют визуально по интенсивности окраски, используя растворы сравнения.

Метод применяют при определении массовой концентрации кислорода от 5 до 30 мкг/дм³.

1.1.2. Аппаратура, реактивы и растворы

Сосуд для отбора проб — в соответствии с черт. 1 справочного приложения.

Редуктор, представляющий собой бюретку, вместимостью 100 см3, с капилляром.

Весы аналитические.

Весы технические.

Колбы мерные вместимостью 100, 250 и 500 см³.

Пипетки с делениями вместимостью 5 см³.

Пипетки без делений вместимостью 25 см³.

Цинк гранулированный.

Кислота азотная, раствор с массовой концентрацией 50 г/дм3.

Ртуть азотнокислая, раствор с массовой концентрацией 100 г/дм³.

Цинк амальгамированный; готовят следующим образом: цинк промывают раствором азотной кислоты, заливают раствором азотнокислой ртути и перемешивают в течение 20—30 мин до образования на гранулах блестящего слоя амальгамы. Гранулы амальгамированного цинка промывают дистиллированной водой.

Спирт этиловый.

Аммиак, разбавленный 4:1.

Кислота соляная, раствор с молярной концентрацией эквивалента С (1HCl) 0,001 моль/дм3.

Сафранин T, раствор с массовой концентрацией 1 г/дм^3 ; готовят следующим образом: в мерную колбу вместимостью 100 см^3 помещают 0.1 г сафранина T, 50 см^3 этилового спирта, 15 см^3 раствора аммиака, объем раствора доводят до метки дистиллированной водой и перемешивают.

Издание официальное

Перепечатка воспрещена

Переиздание.

126

Основной имитирующий раствор; готовят следующим образом: в мерную колбу вместимостью 500 см^3 помещают 0,1064 г сафранина T, доводят объем раствора до метки раствором соляной кислоты и перемешивают.

Рабочий имитирующий раствор; готовят следующим образом: в мерную колбу вместимостью 250 см^3 помещают 25 см^3 основного имитирующего раствора, доводят объем раствора до метки раствором соляной кислоты и перемешивают. Рабочий имитирующий раствор при тысячекратном разбавлении соответствует по интенсивности окраски исследуемому раствору с массовой концентрацией кислорода 1 мкг/дм^3 , прореагировавшего с восстановленным сафранином T.

- 1.1.3. Подготовка к анализу
- 1.1.3.1 В редуктор помещают 25-30 см³ сафранина T, на $^2/_3$ вместимости амальгамированный цинк и дополняют раствором сафранина T до верхнего деления шкалы. При восстановлении сафранина T раствор обесцвечивается.
- 1.1.3.2. Для приготовления растворов сравнения в мерные колбы вместимостью по 100 см³ помещают 0,5; 1,0; 1,5; 2,0; 2,5; 3,0 см³ рабочего имитирующего раствора, 1,5 см³ этилового спирта, объемы растворов доводят до метки раствором соляной кислоты и перемешивают. Интенсивность окраски растворов сравнения соответствует массовой концентрации кислорода 5, 10, 15, 20, 25, 30 мкг/дм³.
 - 1.1.4. Проведение анализа

В сосуд для отбора проб, заполненный исследуемым раствором, вводят через капилляр редуктора 4 см 3 раствора восстановленного сафранина T (верхний кран сосуда закрыт). Через 8 мин сравнивают окраску раствора с окраской растворов сравнения.

1.1.5. Обработка результатов

Допускаемые расхождения результатов двух параллельных определений не должны превышать 5 мкг/дм³.

1.2. Фотоколориметрический метод с использованием метиленового голубого

1.2.1. Сущность метода

Кислород, содержащийся в исследуемом растворе, образует метиленовым голубым, восстановленным глюкозой, окрашенное в синий цвет соединение. Интенсивность окраски раствора измеряют на фотоэлектроколориметре.

Метод применяют при определении массовой концентрации кислорода от 0 до 100 мг/дм³.

1.2.2. Аппаратура, реактивы и растворы

Фотоэлектроколориметр.

Кювета с крышкой, снабженной двумя штуцерами. Натекание воздуха не должно превышать $2.9 \cdot 10^{-6}$ м³ · Π a/c.

Весы аналитические.

Весы технические.

Шприц медицинский.

Цилиндр вместимостью 50 см3 с притертой пробкой.

Колбы мерные вместимостью 50, 100, 250 и 1000 см³.

Мензурка вместимостью 500 см³.

Пипетки с делениями вместимостью I и 5 см³.

D-глюкоза.

Глицерин.

Спирт этиловый.

Калия гидроокись, раствор с массовой концентрацией 400 мкг/дм³.

Метиленовый голубой.

Основной раствор метиленового голубого; готовят следующим образом: в мерную колбу вместимостью 1000 см³ помещают 0,3 г метиленового голубого, 1,2 г глюкозы, 70 см³ дистиллированной воды, доводят объем раствора до метки глицерином и перемешивают.

Рабочий раствор метиленового голубого; готовят следующим образом: в цилиндр помещают 39 см^3 основного раствора метиленового голубого и 1 см^3 раствора гидроокиси калия. При восстановлении метиленового голубого раствор обесцвечивается. Раствор хранят при температуре (20 ± 5) °C не более 24 ч, исключая попадание прямых солнечных лучей.

Основной имитирующий раствор; готовят следующим образом: в мерную колбу вместимостью 1000 см³ помещают 0,2460 г метиленового голубого, добавляют 500 см³ этилового спирта, доводят объем раствора до метки дистиллированной водой и перемешивают.

C. 3 FOCT 26449.3-85

Рабочий имитирующий раствор; готовят следующим образом: в мерную колбу вместимостью 250 см³ помещают 47,5 см³ основного имитирующего раствора, доводят объем раствора до метки дистиллированной водой и перемешивают.

Рабочий имитирующий раствор при двухсоткратном разбавлении соответствует по интенсивности окраски исследуемому раствору с массовой концентрацией кислорода 10 мкг/дм³, прореагировавшего с восстановленным метиленовым голубым.

1.2.3. Проведение анализа

В кювету с исследуемым раствором с помощью шприца вводят 1 см³ рабочего раствора метиленового голубого, перемешивают и через 1 мин измеряют оптическую плотность раствора на фотоэлектроколориметре с красным светофильтром (длина волны $\lambda = 650$ нм) в кювете с толщиной поглощающего свет слоя 50 мм.

В качестве раствора сравнения используют исследуемый раствор.

1.2.4. Построение градуировочного графика

В мерные колбы вместимостью по 100 см³ помещают 1, 2, 3, 4 и 5 см³ рабочего имитирующего раствора и доводят объемы раствора до метки дистиллированной водой. Интенсивность окраски растворов соответствует массовой концентрации кислорода 20, 40, 60, 80 и 100 мкг/дм³. Оптическую плотность растворов измеряют на фотоэлектроколориметре с красным светофильтром (длина волны $\lambda = 650$ нм) в кювете с толщиной поглощающего свет слоя 50 мм. В качестве раствора сравнения используют дистиллированную воду.

По найденным значениям оптической плотности и соответствующим им значениям массовой концентрации кислорода строят градуировочный график.

- 1.2.5. Обработка результатов
- 1.2.5.1. Массовую концентрацию кислорода находят по градуировочному графику.
- 1.2.5.2. Допускаемые расхождения результатов двух параллельных определений не должны превышать значений, приведенных в табл. 1.

Таблица 1

Массовая концентрация кислорода, мкг/дм ³	Допускаемое расхождение			Допускаемое расхождение	
	в абсолютных единицах, мкт/дм ³	в относи- тельных единицах, %	Массовая концентрация кислорода, мкг/дм ³	в абсолютных единицах, мкг/дм ³	в относи- тельных единицах, %
10 20 30 40	7,5 8,2 8,7 9,2	75 41 29 23	50 70 100	9,5 11,1 13,0	19 16 13

1.3. Колориметрический метод определения кислорода в интервале массовых концентраций 10—100 мкг/дм³

1.3.1. Сущность метода

Кислород, содержащийся в исследуемом растворе, образует с метиленовым голубым, восстановленным амальгамированным цинком, окрашенное в синий цвет соединение. Массовую концентрацию кислорода определяют по интенсивности окраски, используя растворы сравнения.

1.3.2. Аппаратура, реактивы и растворы

Сосуд для отбора проб - в соответствии с черт. І справочного приложения.

Редуктор, представляющий собой бюретку, вместимостью 100 см³, с капилляром.

Весы аналитические.

Весы технические.

Колбы мерные вместимостью 50, 100, 250 и 1000 см3.

Пипетки с делениями вместимостью 5 см3.

Цинк амальгамированный; готовят, как указано в п. 1.1.2.

Спирт этиловый.

Метиленовый голубой.

Метиленовый голубой, раствор; готовят следующим образом: в мерную колбу вместимостью 1000 см³ помещают 0,2460 г метиленового голубого, растворяют в 500 см³ этилового спирта и доводят объем раствора до метки дистиллированной водой.

Имитирующий раствор; готовят следующим образом: в мерную колбу вместимостью 250 см³ помещают 47,5 см³ раствора метиленового голубого, доводят объем раствора до метки дистиллированной водой и перемешивают.

Имитирующий раствор при двухсоткратном разбавлении соответствует по интенсивности исследуемому раствору с массовой концентрацией кислорода 10 мкг/дм³, прореагировавшего с восстановленным метиленовым голубым.

- 1.3.3. Подготовка к анализу
- 1.3.3.1 В редуктор помещают 25—30 см³ раствора метиленового голубого, на ²/₃ вместимости амальгамированный цинк, дополняют раствором метиленового голубого до верхнего деления шкалы. При восстановлении метиленового голубого раствор обесцвечивается.
- 1.3.3.2. Для приготовления растворов сравнения в мерные колбы вместимостью по 100 см³ помещают 0,5; 1,0; 1,5; 2,0; 2,5; 3,0; 3,5; 4,0; 4,5; 5,0 см³ имитирующего раствора, доводят объемы растворов до метки дистиллированной водой и перемешивают. Интенсивность окраски растворов сравнения соответствует массовой концентрации кислорода 10, 20, 30, 40, 50, 60, 70, 80, 90, 100 мкг/дм³.
 - 1.3.4. Проведение анализа

В сосуд для отбора проб, заполненный исследуемым раствором, вводят через капилляр редуктора 2 см³ раствора восстановленного метиленового голубого (верхний кран сосуда закрыт). Через 5 мин сравнивают окраску раствора с окраской растворов сравнения.

1.3.5. Обработка результатов

Допускаемые расхождения результатов двух параллельных определений не должны превышать 10 мкг/дм³.

- Колориметрический метод определения кислорода в интервале массовых концентраций 50—500 мкг/дм³
 - 1.4.1. Сущность метода по п. 1.3.1.
 - 1.4.2. Аппаратура, реактивы и растворы по п. 1.3.2.
 - 1.4.3. Подготовка к анализу-
 - 1.4.3.1. Подготовка редуктора по п. 1.3.3.1.
- 1.4.3.2. Для приготовления растворов сравнения в мерные колбы вместимостью по 100 см³ помещают 2,5; 5,0; 7,5; 10,0; 12,5; 15,0; 17,5; 20,0; 22,5; 25,0 см³ имитирующего раствора, доводят объемы растворов до метки дистиллированной водой и перемешивают. Интенсивность окраски растворов сравнения соответствует массовой концентрации кислорода 50, 100, 150, 200, 250, 300, 350, 400, 450, 500 мкг/дм³.
 - 1.4.4. Проведение анализа

В сосуд для отбора проб, заполненный исследуемым раствором, вводят через капилляр редуктора 5 см³ раствора восстановленного метиленового голубого (верхний кран сосуда закрыт). Через 5 мин сравнивают окраску раствора с окраской растворов сравнения.

1.4.5. Обработка результатов

Допускаемые расхождения результатов двух параллельных определений не должны превышать 50 мкг/дм³.

- Колориметрический метод определения кислорода в интервале массовых концентраций 10—100 мкг/дм³ в присутствии затравки
 - 1.5.1. Сущность метода по п. 1.3.1.

Влияние затравки, представляющей собой суспензию углекислого кальция с массовой концентрацией 50—100 г/дм³, учитывают использованием растворов сравнения, приготовленных на фоне исследуемого раствора, содержащего затравку.

- 1.5.2. Аппаратура, реактивы и растворы по п. 1.3.2.
- 1.5.3. Подготовка к анализу
- 1.5.3.1. Подготовка редуктора по п. 1.3.3.1.
- 1.5.3.2. Для приготовления растворов сравнения в мерные колбы вместимостью по 100 см³ помещают 0,5; 1,0; 1,5; 2,0; 2,5; 3,0; 3,5; 4,0; 4,5; 5,0 см³ имитирующего раствора, доводят объемы растворов до метки исследуемым раствором и перемешивают. Интенсивность окраски растворов сравнения соответствует массовой концентрации кислорода 10, 20, 30, 40, 50, 60, 70, 80, 90, 100 мкг/дм³.
 - 1.5.4. Проведение анализа по п. 1.3.4.

9-2--1819

C. 5 FOCT 26449.3-85

1.5.5. Обработка результатов

Допускаемые расхождения результатов двух параллельных определений не должны превышать 10 мкг/дм³.

Колориметрический метод определения кислорода в интервале массовых концентраций 50—500 мкг/дм³ в присутствии затравки

- 1.6.1. Сущность метода по п. 1.5.1,
- 1.6.2. Аппаратура, реактивы и растворы по п. 1.3.2.
- 1.6.3. Подготовка к анализу
- 1.6.3.1. Подготовка редуктора по п. 1.3.3.1.
- 1.6.3.2. Для приготовления растворов сравнения в мерные колбы вместимостью по 100 см³ помещают 2,5; 5,0; 7,5; 10,0; 12,5; 15,0; 17,5; 20,0; 22,5; 25,0 см³ имитирующего раствора, доводят объемы растворов до метки исследуемым раствором и перемешивают. Интенсивность окраски растворов сравнения соответствует массовой концентрации кислорода 50, 100, 150, 200, 250, 300, 350, 400, 450, 500 мкг/дм³.
 - 1.6,4. Проведение анализа по п. 1.4.4.
 - 1.6.5. Обработка результатов

Допускаемые расхождения результатов двух параллельных определений не должны превышать 50 мкг/дм³.

1.7. Титриметрический метод определения кислорода в интервале массовых концентраций $0.2-4.0~\mathrm{MF/дm}^3$

1.7.1. Сущность метода

Кислород, содержащийся в исследуемом растворе, окисляет марганец (II) в щелочной среде до марганца (IV). В кислой среде марганец (IV) восстанавливается до марганца (II), окисляя йод в количестве, эквивалентном связанному кислороду. Выделившийся йод титруют раствором серноватистокислого натрия.

Влияние окислителей и восстановителей, содержащихся в исследуемом растворе, учитывают изменением порядка введения реактивов в две одновременно взятые пробы.

1.7.2. Аппаратура, реактивы и растворы

Сосуд для отбора проб вместимостью 100—200 см³ — в соответствии с черт. 2 приложения. Вместимость сосуда определяют по п. 5.1 приложения.

Весы технические.

Воронки лабораторные диаметром 50-100 мм.

Фильтры ФОС по ГОСТ 12026-76.

Пипетки с делениями вместимостью 1 и 5 см³ с капиллярами.

Пипетки без делений вместимостью 1 см3.

Колбы конические вместимостью 500 см3.

Мензурка вместимостью 100 см³.

Натрий серноватистокислый, стандарт-титр.

Натрий серноватистокислый, раствор с молярной концентрацией эквивалента

$$C\left(\frac{1}{2}\text{Na}_2\text{S}_2\text{O}_3 \cdot 5\text{H}_2\text{O}\right) 0,002$$
 моль/дм³; готовят разведением раствора, приготовленного из стандарттитра.

Кислота серная.

Марганец хлористый, раствор; готовят следующим образом: 45 г хлористого марганца растворяют в 100 см³ дистиллированной воды; фильтруют, добавляют 1 см³ серной кислоты.

Натрия гидроокись.

Калий йодистый.

Калий йодноватокислый.

Смесь йодид-йодатная; готовят следующим образом: в 100 см³ дистиллированной воды растворяют 36 г гидроокиси натрия, 20 г йодистого калия и 0,05 г йодноватокислого калия.

Крахмал, раствор с массовой концентрацией 10 г/дм3; готовят по ГОСТ 4517-87.

Кислота ортофосфорная, разбавленная 1:1.

1.7.3. Проведение анализа

Исследуемый раствор отбирают в два сосуда для отбора проб.

В первый сосуд добавляют I см³ раствора хлористого марганца, 3 см³ йодид-йодатной смеси, перемешивают и после отстаивания раствора добавляют 5 см³ раствора ортофосфорной кислоты.

Во второй сосуд вводят 5 см³ раствора ортофосфорной кислоты, 3 см³ йодид-йодатной смеси и 1 см³ раствора хлористого марганца, перемешивая содержимое сосуда после добавления каждого реактива.

Растворы из сосудов помещают в конические колбы и титруют раствором серноватистокислого натрия до светло-желтой окраски, добавляют 1 см³ раствора крахмала и титруют до обесцвечивания

1.7.4. Обработка результатов

1.7.4.1. Массовую концентрацию кислорода X, мг/дм³, вычисляют по формуле

$$X = \frac{V_1 \cdot 0.016 \cdot 1000}{V_2} - \frac{V_3 \cdot 0.016 \cdot 1000}{V_4} \; ,$$

 где V₁ — объем раствора серноватистокислого натрия, израсходованный на титрование раствора из первого сосуда, см³;

 V_2 — вместимость первого сосуда, см³;

 V_3 — объем раствора серноватистокислого натрия, израсходованный на титрование раствора из второго сосуда, см³:

 V_4 — вместимость второго сосуда, см³;

0,016 — масса кислорода, эквивалентная массе серноватистокислого натрия в 1 см³ раствора с молярной концентрацией эквивалента 0,002 моль/дм³, мг.

 1.7.4.2. Допускаемые расхождения результатов двух параллельных определений не должны превышать значений, приведенных в табл. 2.

Таблица 2

Массовая концентрация кислорода, міт/дм ³	Допускаемое	- 18 - 18 - 18 - 18 - 18 - 18 - 18 - 18		Допускаемое	Допускаемое расхождение	
	в абсолютных единицах; мг/дм ³	в относи- тельных единицах, %	Массовая концентрация кислорода, мг/дм ³	в абсолютных единицах, мг/дм ³	в относи- тельных единицах, %	
0,14, 0,20 0,30 0,40 0,50, 0,60	0,10 0,10 0,10 0,10 0,10 0,10	71 50 33 25 20	1,00 1,20 1,40 1,60 1,80 2,00	0,10 0,11 0,11 0,11 0,11 0,11	10 9 8 7 6 6	
0,70. 0,80 0,90	0,10 0,10 0,10	14 13 11	2,50 3,00 4,00	0,13 0,13 0,15	5 4 4	

1.8. Титриметрический метод определения кислорода в интервале массовых концентраций $1-10~\mathrm{Mf/дm^3}$

1.8.1. Сущность метода — по п. 1.7.1.

 1.8.2. Аппаратура, реактивы и растворы — по п. 1.7.2 (кроме раствора натрия серноватистокислого)

Натрий серноватистокислый, раствор с молярной концентрацией эквивалента

 $C\left(\frac{1}{2}\text{Na}_2\text{S}_2\text{O}_3.5\text{H}_2\text{O}\right)~0.01~\text{моль/дм}^3$; готовят разведением раствора, приготовленного из стандарттитра.

1.8.3. Проведение анализа — по п. 1.7.3.

1.8.4. Обработка результатов

1.8.4.1. Массовую концентрацию кислорода X, мг/дм³, вычисляют по формуле

$$X = \frac{V_1 \cdot 0.08 \cdot 1000}{V_2} - \frac{V_3 \cdot 0.08 \cdot 1000}{V_4} \ ,$$

G D S T

C. 7 FOCT 26449.3-85

- где V₁ объем раствора серноватистокислого натрия, израсходованный на титрование раствора из первого сосуда, см³:
 - V₂ вместимость первого сосуда, см³;
 - V₃ объем раствора серноватистокислого натрия, израсходованный на титрование раствора из второго сосуда, см³;
 - V_4 вместимость второго сосуда, см³;
 - 0,08 масса кислорода, эквивалентная массе серноватистокислого натрия в 1 см³ раствора с молярной концентрацией эквивалента 0,01 моль/дм³, мг.
- 1.8.4.2. Допускаемые расхождения результатов двух параллельных определений не должны превышать значений, приведенных в табл. 3.

Таблица 3

Массовая концентрация кислорода, мг/дм ²	Допускаемое расхождение			Допускаемое расхождение.	
	в абсолютных единицах, мт/дм	в относи- тельных единицах, %	Массовая концентрация кислорода, мг/дм ³	в абсолютных единицах, мг/дм ³	в относи- тельных единицах, %
0,4 0,5 1,0 2,0 3,0 4,0	0,30 0,30 0,30 0,30 0,30 0,32 0,34	75 60 30 15 10 8	5,0 6,0 7,0 8,0 9,0	0,36 0,38 0,40 0,41 0,42 0,45	7 6 6 · 5 5

1.9. Титриметрический метод определения кислорода в интервале массовых концентраций 1—10 мг/дм³ в присутствии затравки

1.9.1. Сущность метода — по п. 1.7.1.

Влияние затравки устраняют отстаиванием исследуемого раствора.

 1.9.2. Аппаратура, реактивы и растворы — по п. 1.7.2 (кроме сосудов для отбора проб и раствора серноватистокислого натрия)

Сосуды для отбора проб — в соответствии с черт. 3 приложения.

Натрий серноватистокислый, раствор с молярной концентрацией эквивалента $C\left(\frac{1}{2}\operatorname{Na_2S_2O_3} \cdot 5\operatorname{H}_2\mathrm{O}\right) 0.01$ моль/дм³; готовят разведением раствора, приготовленного из стандарттитра.

1.9.3. Проведение анализа

Исследуемый раствор отбирают в два сосуда для отбора проб. После отстаивания раствора склянки сосуда разъединяют, предварительно перекрыв соединительные шланги зажимами, и далее проводят анализ, как указано в п. 1.7.3.

1.9.4. Обработка результатов — по п. 1.8.4.

1.10. Электрометрический метод

1.10.1. Сущность метода

Массовую концентрацию кислорода определяют по силе тока, возникающего в результате диффузии растворенного кислорода через мембрану датчика кислородомера, погруженного в исследуемый раствор, движущийся со скоростью 10—500 см/с.

1.10.2. Аппаратура, реактивы и растворы — по п. 1.8.2 или при наличии затравки по п. 1.9.2 и перечисленные ниже.

Кислородомер КЛ-115 с пределом допускаемой основной погрешности измерения 0,2—0,4 мг/дм³ для массовых концентраций кислорода 0,3—20,0 мг/дм³.

Термометр ртутный со шкалой 0-50 °C и ценой деления 0,1 °C.

Барометр мембранный метеорологический.

Мешалка магнитная.

Прибор регистрирующий вторичный с пределом допускаемой основной погрешности $\pm 1~\%$ от верхнего предела измерения.

Весы технические.

Мензурка вместимостью 1000 см³.

Стандартный раствор 1, раствор натрия сернистокислого с массовой концентрацией 80 г/дм³; готовят следующим образом: 80 г безводного сернистокислого натрия растворяют в 1 дм³ исследуемого раствора и выдерживают в течение 8 ч, хранят в банке с притертой пробкой.

Стандартный раствор 2, исследуемый раствор с известной массовой концентрацией кислорода, определенной, как указано в п. 1.8 или при наличии затравки — в п. 1.9; готовят следующим образом: 10 дм³ исследуемого раствора помещают в бутыль и насыщают кислородом воздуха при температуре и давлении окружающей среды.

1.10.3. Подготовка к анализу

Датчик кислородомера выдерживают в течение 4—5 ч в дистиллированной воде. Для градуировки шкалы кислородомера используют стандартные растворы 1 и 2. В измерительную ячейку помещают стандартный раствор 1, погружают датчик и при перемешивании устанавливают на шкале кислородомера значение массовой концентрации кислорода 0—0,2 мг/дм³.

Измерительную ячейку и датчик кислородомера промывают дистиллированной водой и стандартным раствором 2. Затем в измерительную ячейку помещают стандартный раствор 2, погружают датчик и при перемешивании устанавливают на шкале кислородомера значение массовой концентрации кислорода.

1.10.4. Проведение анализа

Датчик погружают в исследуемый раствор и через 20—30 мин определяют массовую концентрацию кислорода по шкале кислородомера или с использованием вторичного регистрирующего прибора.

 1.10.5. Погрешность определения массовой концентрации кислорода не должна превышать значений, приведенных в табл. 4.

Погрешность определения Погрешность определения массовой концентрации массовой концентрации Массовая концентрация Массовая концентрация в абсолютных в относив абсолютных в относикислорода, мкг/дм кислорода, мкг/дм единицик. тельных единицах. тельных елинация. % единицах. % Mikir Zami³ MKE/dW³ 0.30.203.0 0.238 0.4 50 5.0 0.25 0.205 0,5 0.21 42 7.0 0.27 4 0,70.21 30 10.0 0.30 3 0,21 1,0 21 15,0 0,35 2 0.402 1,5 0,22 15 20,02.0 0.2211

Таблица 4

2. МЕТОДЫ ОПРЕДЕЛЕНИЯ СВОБОДНОЙ ДВУОКИСИ УГЛЕРОДА

Метод потенциометрического титрования в интервале массовых концентраций двуокиси углерода 0,5—60,0 мг/дм³

2.1.1. Сущность метода

Свободная двуокись углерода взаимодействует с гидроокисью натрия с образованием двууглекислого натрия. Титрование проводят до pH 8,4.

2.1.2. Аппаратура, реактивы и растворы

Сосуд для потенциометрического титрования — в соответствии с черт. 4 приложения. Вместимость сосуда определяют по п. 6.1 приложения.

Электрод стеклянный типа 1 или 3 по ГОСТ 16287-77.

Электрод сравнения хлорсеребряный насыщенный по ГОСТ 17792-72.

Термокомпенсатор автоматический с тепловой инерционностью не более 3 мин.

Термометр лабораторный со шкалой от 0 до 30 °C, ценой деления 1 °C.

Растворы буферные c pH, равными 6,86 и 9,18; готовят по ГОСТ 8.135-74.

Мешалка электромагнитная.

C. 9 FOCT 26449.3—85

Микробюретка вместимостью 5 см³.

Колбы мерные вместимостью 1000 см³,

Натрия гидроокись, стандарт-титр.

Натрия гидроокись, раствор с молярной концентрацией эквивалента C (INaOH) 0,01 моль/дм³; готовят разведением раствора, приготовленного из стандарт-титра.

2.1.3. Проведение анализа

Сосуд для потенциометрического титрования, заполненный исследуемым раствором, устанавливают на электромагнитную мешалку, погружают электроды и термокомпенсатор и титруют раствором гидроокиси натрия до pH 8,4.

2.1.4. Обработка результатов

2.1.4.1. Массовую концентрацию свободной двуокиси углерода X, мг/дм³, вычисляют по формуле

$$X=\frac{V_1\cdot 0.44\cdot 1000}{V}\;,$$

где V_1 — объем раствора гидроокиси натрия, израсходованный на титрование, см³;

 0,44 — масса двуокиси углерода, эквивалентная массе гидроокиси натрия в 1 см³ раствора с молярной концентрацией эквивалента 0,01 моль/дм³, мг;

V — вместимость сосуда, см³.

 2.1.4.2. Допускаемые расхождения результатов двух параллельных определений не должны превышать значений, приведенных в табл. 5.

Таблица 5

Массовая концентрация свободной двуокиси кислорода, мт/дм ²	Допускаемое	to the little and the		Допускаемое	емое расхождение.	
	в абсолютных единицах, мг/дм ³	в относи- тельных единицах, %	Массовая концентрация свободной двуокиси кислорода, мг/дм ³	в абсолютных единицах, мг/дм ³	в относи- тельных единицах, %	
0,3 0,5 1,0 2,0	0,05 0,06 0,06 0,08	17 12 6 4	3,0 4,0 5,0 6,0 и более	0,10 0,12 0,14 0,19	3 3 3 3	

Метод потенциометрического титрования в интервале массовых концентраций двуокиси углерода 5—500 мг/дм³

- 2.2.1. Сущность метода по п. 2.1.1.
- 2.2.2. Аппаратура, реактивы и растворы по п. 2.1.2 (кроме раствора гидроокиси натрия)

Натрия гидроокись, раствор с молярной концентрацией эквивалента C (1NaOH) 0,01 моль/дм³; готовят из стандарт-титра.

- 2.2.3. Проведение анализа, как указано в п. 2.1.3.
- 2.2.4. Обработка результатов
- 2.2.4.1. Массовую концентрацию свободной двуокиси углерода X, мг/дм³, вычисляют по формуле

$$X = \frac{V_1 \cdot 4.4 \cdot 1000}{V}$$
,

где V_1 — объем раствора гидроокиси натрия, израсходованный на титрование, см³;

4,4 — масса двуокиси утлерода, эквивалентная массе гидроокиси натрия в 1 см³ раствора с молярной концентрацией эквивалента 0,01 моль/дм³, мг;

V — вместимость сосуда, см³.

 2.2.4.2. Допускаемые расхождения результатов двух параллельных определений не должны превышать значений, приведенных в табл. 6.

Таблица 6

Массовая концентрация свободной двуокиси кислорода, мг/дм ²	Допускаемое	расхождение	Массовая концентрация свободной двуокиси кислорода, мг/дм ³	Допускаемое расхождение	
	в абсолютных единицах мг/дм ³	в относи- тельных единицах, %		в абсолютных единицах, мг/дм ³	в относи- тельных единицах, %
2,5 3,0 4,0 5,0 6,0 8,0 10,0	0,41 0,41 0,43 0,45 0,50 0,50 0,54	16,0 14,0 11,0 9,0 8,0 6,0 5,0	15,0 20,0 25,0 30,0 40,0 100,0 и более	0,70 0,72 0,72 0,82 1,19	5,0 4,0 3,0 3,0 3,0 2,0

3. ТИТРИМЕТРИЧЕСКИЙ МЕТОД ОПРЕДЕЛЕНИЯ СЕРОВОДОРОДА

3.1. Сущность метода

Сульфид-ионы осаждают в виде сернистого кадмия и окисляют йодом. Избыток йода оттитровывают раствором серноватистокислого натрия.

Метод применяют при определении массовой концентрации сероводорода от 2 мг/дм³ и более:

Нижний предел обнаружения составляет 0,8 мг/дм3,

3.2. Аппаратура, реактивы и растворы

Банки с притертыми пробками вместимостью 500-800 см³.

Колбы мерные вместимостью 1000 см3.

Колбы конические вместимостью 250 см3.

Бюретка вместимостью 25 см3.

Пипетки без делений вместимостью 10 и 20 см3.

Мензурка вместимостью 100 см³.

Кислота уксусная.

Кадмий уксуснокислый, раствор; готовят следующим образом: в мерную колбу помещают 40 г уксуснокислого кадмия, растворяют в дистиллированной воде, добавляют 40 см³ уксусной кислоты и доводят объем раствора до метки дистиллированной водой.

Кислота соляная, разбавленная 1:1.

Натрий серноватистокислый, стандарт-титр.

Натрий серноватистокислый, раствор с молярной концентрацией эквивалента

 $C\left(\frac{1}{2}\text{Na}_2\text{S}_2\text{O}_3 \cdot 5\text{H}_2\text{O}\right)\theta$,05 моль/дм³; готовят разведением раствора, приготовленного из стандарттитра.

Йод, стандарт-титр.

Йод, раствор с молярной концентрацией эквивалента $C\left(\frac{1}{2}I_2\right)$ 0,05 моль/дм³; готовят разведением раствора, приготовленного из стандарт-титра,

Крахмал, раствор с массовой концентрацией 10 г/дм³; готовят по ГОСТ 4517-87.

3.3. Подготовка к анализу

В банку помещают 100 см³ раствора уксуснокислого кадмия и исследуемый раствор в объеме, содержащем I—10 мг сероводорода. Раствор отстаивают до полного осветления.

3.4. Проведение анализа

Осветленный раствор отделяют от осадка сернистого кадмия декантацией. Осадок переносят в коническую колбу, добавляют 20 см³ раствора йода и 10 см³ раствора соляной кислоты. Избыток раствора йода титруют раствором серноватистокислого натрия до светло-желтой окраски, добавляют 1 см³ раствора крахмала и титруют до обесцвечивания.

C. 11 FOCT 26449.3-85

3.5. Обработка результатов

3.5.1. Массовую концентрацию сероводорода X, мг/дм³, вычисляют по формуле

$$X = \frac{(V_1 - V_3) \cdot 0.852 - 1000}{V} \; ,$$

где V_1 — объем раствора йода, добавленный к исследуемому раствору, см³;

 V_2 — объем раствора серноватистокислого натрия, израсходованный на титрование, см³;

 0,852 — масса сероводорода, эквивалентная массе серноватистокислого натрия в 1 см³ раствора с молярной концентрацией эквивалента 0,05 моль/дм³, мг;

V — объем исследуемого раствора, взятый для анализа, см³.

 3.5.2. Допускаемые расхождения результатов двух параллельных определений не должны превышать значений, приведенных в табл. 7.

Таблица 7

Массовая концентрация сероводорода, мг/дм ³	Допускаемое расхождение			Допускаемое расхождение	
	в абсолютных единицах, мг/дм ³	в относи- тельных единицах, %	Массовая концентрация сероводорода, м1/дм ³	в абсолютных единицах, мг/дм ³	в относи- тельных единицах, %
0,8 1,0 2,0 4,0 6,0 8,0 10,0 12,0	0,6 0,6 0,6 0,6 0,7 0,7 0,7 0,8 0,8	75,0 60,0 30,0 15,0 11,0 9,0 8,0 7,0	14,0 16,0 18,0 20,0 25,0 30,0 40,0	0,9 0,9 0,9 0,9 1,0 1,0 1,3	7,0 6,0 5,0 4,5 4,0 3,3 3,2

ПРИЛОЖЕНИЕ Справочное

ОТБОР ПРОБ СОЛЕНЫХ ВОД И ДИСТИЛЛЯТА ДЛЯ ОПРЕДЕЛЕНИЯ МАССОВОЙ КОНЦЕНТРАЦИИ ГАЗОВ

1. Длина коммуникаций пробоотбора не должна превышать 6 м.

 Сосуды для отбора проб (см. черт. 1—4) следует присоединять к пробоотборному устройству (черт. 1 и 2 приложения 2 ГОСТ 26449.0—85) при помощи резинового шланга.

Перед отбором пробы сосуды необходимо промывать не менее чем 6-кратным объемом исследуемого паствора.

 Отбор проб из коммуникаций и аппаратов, находящихся под вакуумметрическим давлением, следует производить, как указано в приложении 2 ГОСТ 26449.0—85.

 При отборе проб для определения массовой концентрации кислорода следует использовать сосуды в соответствии с черт. 1—3, вместимость которых предварительно определяют гравиметрическим методом.

6. Гравиметрический метод определения вместимости сосудов

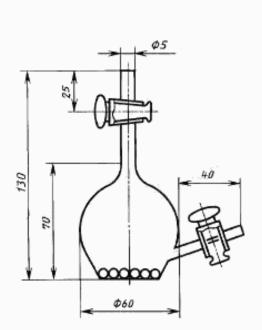
6.1. Сущность метода

Вместимость сосудов для отбора проб определяют по массе дистиллированной воды с температурой 20 °C.

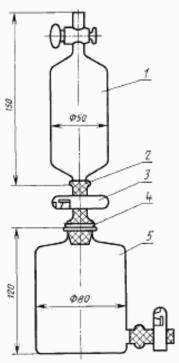
6.2. Аппаратура, реактивы и растворы

Весы технические.

Термостат с основной погрешностью стабилизации температуры не более 0,1 °C.


Шкаф сушильный,

Эксикатор.


Термометр ртутный стеклянный со шкалой от 0 до 50 °C и ценой деления 0,1 °C.

Бумага фильтровальная.

Сосуды для отбора проб (черт, 1-3)

I — склянка; 2 - шлант; 3 — зажим;
І — пробка; 5 — склянка с тубусом

Черт. 1

Черт. 2

Черт. 3

6.3. Определение вместимости сосуда

Сосуд моют, как указано в приложении 2 ГОСТ 26449.0—85, сушат в сущильном цікафу при температуре 105—110 °С в течение 2—3 ч. охлаждают в эксикаторе до температуры 20 °С и взвешивают. Затем сосуд заполняют дистиллированной водой температурой 20—25 °С и помещают в термостат, где выдерживают в течение 40 мин при температуре 20 °С. Сосуд извлекают из термостата, насухо вытирают фильтровальной бумагой и взвешивают.

6.4. Обработка результатов

6.4.1. Вместимость сосуда V, см3, вычисляют по формуле

$$V = \frac{m_2 - m_1}{0.9982}$$

где m₂ — масса сосуда с дистиллированной водой, г;

т₁ — масса сосуда, г;

0.9982 — плотность дистиллированной воды при 20 °C, т/см³.

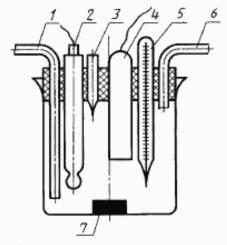
6.4.2. Относительная погрешность определения вместимости сосуда — не более 1 %.

 При отборе проб для определения массовой концентрации двуокиси углерода следует использовать сосуд для потенциометрического титрования (см. черт. 4), вместимость которого предварительно определяют гравиметрическим методом.

Гравиметрический метод определения вместимости сосуда для потенциометрического титрования:

8.1. Сущность метода — по п. 6.1.

8.2. Аппаратура, реактивы и растворы — по п. 6.2.


8.3. Определение вместимости сосуда

Сосуд моют, как указано в приложении 2 ГОСТ 26449.0—85, насухо вытирают фильтровальной бумагой, взвешивают, заполняют дистиплированной водой и далее определяют вместимость по п. 6.3.

137

8.4. Обработка результатов — по п. 6.4.

Сосуд для потенциометрического титрования (для отбора проб)

I — вход раствора; 2 - электрод стеклянный; 3 — микробюретка; 4 — электрод сравнения; 5 — термометр; 6 — выход раствора; 7 — мешалка

Черт. 4

