

ГОСУДАРСТВЕННЫЙ СТАНДАРТ СОЮЗА ССР

ДЕТЕКТОРЫ ИОНИЗИРУЮЩИХ ИЗЛУЧЕНИЙ ПОЛУПРОВОДНИКОВЫЕ

методы измерения параметров ГССТ 26222—86

Издание официальное

ГОСУДАРСТВЕННЫЙ КОМИТЕТ СССР ПО СТАНДАРТАМ Москва

ГОСУДАРСТВЕННЫЙ СТАНДАРТ СОЮЗА ССР

ДЕТЕКТОРЫ ИОНИЗИРУЮЩИХ ИЗЛУЧЕНИЯ ПОЛУПРОВОДНИКОВЫЕ

Методы измерения параметров

ГОСТ 26222-86

Ionizing radiation semiconductor detectors.

Methods of parameters measurement

Взамен ГОСТ 17619—72, ГОСТ 26222—84

OKII 621752

Постановлением Государственного комитета СССР по стандартам от 18 марта 1986 г. № 558 срок действия установлен

с 01.07.87 до 01.07.92

Несоблюдение стандарта преследуется по закону

Настоящий стандарт распространяется на полупроводниковые детекторы нонизирующих излучений (далее — ППД) и устанавливает методы измерения их электрических и радиометрических параметров:

темнового тока;

емкости (гармонический и зарядовый методы);

энергетического разрешения;

энергетического эквивалента шума (метод непосредственного измерения и спектрометрический метод);

энергетического эквивалента толщины мертвого слоя;

дискретной чувствительности регистрации:

средней частоты следования фоновых импульсов;

радиационной помехоустойчивости;

аналоговой чувствительности регистрации (статический и импульсный методы);

времени нарастания сигнала;

длительности фронта нарастания сигнала.

В справочном приложении 1 приведен метод оценки времени установления рабочего режима.

Стандарт не распространяется на ППД, изготавливаемые по-ГОСТ 18398—81, а также на запоминающие ППД.

Издание официальное

Перепечатка воспрещена-

大

С Издательство стандартов, 1986

Стандарт применяют при проведении измерений параметров ППД, а также при разработке средств измерений параметров ППД.

Стандарт рекомендуется применять при измерениях параметров полуфабрикатов и деталей ППД в технологическом процессе их изготовления.

Термины, применяемые в стандарте, и их определения — по ГОСТ 18177—81.

1. ОБЩИЕ ПОЛОЖЕНИЯ

1.1. Условия и режим применения

1.1.1. Измерения параметров проводят в нормальных климатических условиях, установленных ГОСТ 20.57.406—81, или условиях, установленных в стандартах, технических условиях или другой нормативно-технической документации, утвержденной в установленном порядке (далее — НТД) на ППД конкретных типов:

при температуре окружающей среды или корпуса ППД

 (20 ± 1) °C;

при пониженной температуре окружающей среды или корпуса ППД, выбираемой из ряда: минус (40; 50; 60; 100; 198) °С;

при пониженном атмосферном давлении, выбираемом из ряда: 666 (5): 133 (1); 13,3 (10^{-1}); 1,33 (10^{-2}); 1,33· 10^{-1} (10^{-8}) Па

(мм рт. ст.).

Измерения параметров спектрометрических ППД, имеющих энергетическое разрешение не более 30 кэВ, осуществляемые вне вакуума или при отсутствии пониженной температуры окружающей среды или корпуса детектора, следует проводить в условиях «чистой комнаты», установленных в НТД.

- 1.1.2. Измерения электрических и радиометрических параметров ППД, у которых отсутствует светозащита, а также полуфабрикатов и деталей ППД следует проводить при полном затемнении ППД (полуфабриката, детали).
- 1.1.3. При измерениях не должно быть влияний электромагнитных полей и фона ионизирующего излучения на результаты измерений либо должны быть приняты меры по учету этих влияний.
- 1.1.4. Измерения параметров ППД проводят при поданном на сигнальные выводы ППД напряжении, значение и полярность которого указывают в НТД.
 - 1.2. Требования к аппаратуре
- 1.2.1. Номенклатура средств измерений, применяемых для измерения параметров ППД, должна соответствовать перечням, установленным в НТД.

1.2.2. Измерительные установки должны обеспечивать погрешность измерения соответствующих параметров согласно требованиям настоящего стандарта и НТД.

 При дистанционных измерениях параметров допускается увеличивать погрешность за счет влияния дистанционных соедини-

тельных устройств.

Допустимое значение дополнительной погрешности, возникающей вследствие влияния дистанционных соединительных уст-

ройств, устанавливают в НТД.

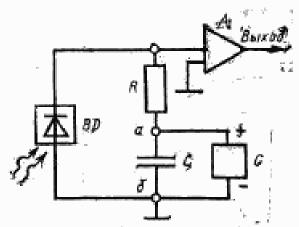
1.2.4. Измерительные установки должны быть снабжены встроенными или съемными контактодержателями, обеспечивающими подключение ППД к измерительной установке без нарушения целостности выводов ППД и их покрытий.

Контактодержатели ППД должны обеспечивать экранирование от электромагнитных полей и затемнение ППД при измерениях электрических и радиометрических параметров, если такая защита не обеспечивается конструкцией измеряемого ППД или другими конструктивными элементами установки.

1.2.5. Требования к устройствам задания рабочего напряжения

ЛПД

1.2.5.1. Коэффициент пульсации на выходе источников рабоче-


то напряжения не должен превышать 1 %.

- 1.2.5.2. Регулирующие устройства, предназначенные для установления рабочего напряжения, должны обеспечивать плавное измененые напряжения и перекрытие границ диапазонов не менее 10 %.
- 1.2.5.3. В случае применения зарядочувствительного усилителя (далее ЗУ), имеющего на входе транзисторы, и измерения ППД с рабочим напряжением свыше 50 В, скорость изменения подаваемого на входные выводы установки рабочего напряжения должна быть не более 50 В с⁻¹.
- 1.2.5.4. Нестабильность источников рабочего напряжения, вызванная изменениями напряжения сети электропитания и температуры в пределах рабочих условий применения, не должна выходить за пределы ±1 %.
- 1.2.6. Погрешность установления и поддержания рабочего напряжения на сигнальных выводах ППД должна быть в пределах ±5 %.
- 1.2.7. Схема подключения ППД и источника рабочего напряжения ППД к установкам, имеющим на входе ЗУ, должна соответствовать приведенной на черт. 1.

В НТД допускаются:

заземление точки а вместо точки б;

противоположная полярность включения ППД и источника рабочего напряжения.

ВО-ППД; А-зарядочувствительный усили-тель (ЗУ); R-резистор утечки; С-блокирую-щий комдемситор; С-источник рабочего илприжения: а, 6-точки подключения рабочего напряжения

Черт. 1

При достаточно малом темновом токе ППД и входе ЗУ, гальванически связанном с общим (нулевым) проводом схемы, допускается исключать резистор утечки при условии заземления точкн а.

Полярность сигнала на входе ЗУ — отрицательная, при перемене полярности ППД и источника рабочего напряжения полярность изменяется на положительную.

Сопротивление резистора утечки должно удовлетворять неравенствам:

$$R \gg \frac{10\pi}{C_{ax}};$$
 (1)

$$R \geqslant \frac{10\pi}{C_{AT}};$$
 (1)
 $R \geqslant 2 \cdot 10^8 \frac{KT\pi}{\chi^2 E_{m,\gamma}^2}$, (2)

где R — сопротивление резистора утечки, MOм;

 постоянная времени формирования переходной характеристики ЗУ, мкс:

 $C_{\rm at}$ — емкость ППД, пФ;

 постоянная Больцмана, равная 1,38·10⁻⁵ аДж·К⁻¹; абсолютная температура резистора, равная 300 K;

коэффициент преобразования, аКл кэВ-1;

 $Z_{m,y}$ — коэффициент преобразования, али шумов усилителя, $E_{m,y}$ — энергетический эквивалент уровня шумов усилителя,

Емкость блокирующего конденсатора должна превышать емкость измеряемого ППД не менее чем в 100 раз.

Минимальные значения сопротивления резистора утечки и емкости блокирующего конденсатора должны соответствовать указанным в НТД.

		Mangolf	Норым вараметров ЗУ пр	пря взиерення параметров ППП		таолина 1
Навменование пераметров зарядочувствательных уси- лятелей	CMT0CTR	Bitepretramentoro Becomestra my-	эпертотического разрешения и внертетического ожовевалента тол- шяны мертвого слоя	жискретной чувет- вительности и виск- ретной эффектив- ностя	amilionoposi Typicionicas- mocra	аременици параметров
Предельное изменене коэффициента передачи ЗУ, вызванное измене-	#	Ĥ	Ĥ	±5	#3	#10
Максимальная эмплиту- да входного сигиала, фКл	-1.2C _{ar} U _a	±47.Em.17	—1,5% <i>E</i> max	-50,	-1,2Qmax	1,20max
Предельный шум", кэВ	I	(0,1-1,0) Eu. NO	E KT 0	$\left(\frac{0.175Q_A^2}{\chi} - E_{\text{in-Ar}}^2\right)^{1/2}$	(0,01-0,10) Qmax	Qmax

Обозначения

U_в — амплитуда напряжения генератора, мВ; С_{дт} — емкость ППД, пФ; Е_{ведт} — ввергетический эконивалент шума ППД, кэВ; Еведт максимальная регистрируемая энсргия, кэВ; Q_{max} максимальний регистрируемый заряд, фКл; Q .:— порот дискриминации, фКл; у — коэффициент преобразования, фКл: квВ-1; К в. кт. т порма на энергетический эквивалент шума ППД, установ лення в НТД. максимальный регистрируемый заряд,

CAR STO HEMCHERIE • Для измерения ППД, емкость которых превышает 1000 пФ, допускается учитывать влижине изменения коэффициента передачи ЗУ под действием изменения емкости ППД на результаты измерения,

выходит за пределы установленных требований, применям градунровочные графики илятаблицы. ** Звачение предельного шума конкретного ЗУ должно спответствовать установленному в ТУ на ППД конкрет-ных типов из ряда: 1,0; 1,2; 1,5; 2,0; 2,5;3,0; 4,0; 5,0; 6,0; 7,5 с коэффициентом 10 ^m, изВ, где m — целое число, кэ ряда: 1,0; 1,2; 1,5; 2,0; 2,5; 3,0; яющее керавенству (-2 < m < 2). удовлетворяющее неравенству

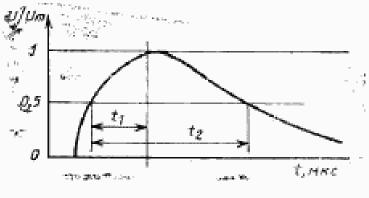
1.2.8. Основные параметры ЗУ — предельное изменение коэффициента передачи, вызванное изменением емкости ППД, энергетический эквивалент шума (далее — шум) и максимальная амплитуда входного сигнала должны соответствовать нормам, установленным в НТД на ППД конкретных типов, согласно табл. 1.

Требования к энергетическому эквиваленту шумов ЗУ должны:

выполнять при соблюдении следующих условий:

емкость конденсатора, подключенного ко входу ЗУ, равнамаксимальной емкости ППД;

напряжение, подаваемое от источника рабочего напряжения на вход установки, равно напряжению, подаваемому на ППД


Рекомендуемые схемы зарядочувствительных входных каскадов и их основные шумовые характеристики приведены в справочном приложении 2.

Параметры t_1 и t_2 (черт. 2) переходной характеристики ЗУ при всех значениях амплитуд входных сигналов, указанных в табл. 1, должны быть в следующих пределах:

$$t_1 = (0.75 \pm 0.15)\tau,$$
 (3)

$$t_s = (2,5 \pm 0,5)\tau,$$
 (4).

где т — постоянная времени формирования переходной карактеристики, мкс.

Черт. 2

Значение постоянной времени формирования переходной характеристики устанавливают в НТД на ППД из ряда: 0,05; 0,10; 0,20; 0,50; 1,00 с коэффициентом 10l, мкс, где l=1 для спектрометрических и токовых ППД и l=0 для остальных ППД.

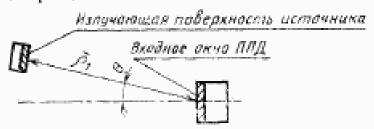
В технически обоснованных случаях в НТД на ППД устанавливают параметры переходной характеристики, отличные от параметров, приведенных на черт. 2.

Переходные характеристики усилителей, предназначенных для измерения временных параметров, должны соответствовать требованиям, установленным в п. 12.2. 1.2.9. Если ППД имеет изолированный от электродов корпус, то место подключения корпуса ППД к измерительной схеме должно соответствовать указанному в НТД.

1.2.10. В конструкции установок или в их эксплуатационной документации должны быть предусмотрены меры, предотвращающие выход установок из строя при подключении к ним дефектных ППД, а также при смене ППД.

1.2.11. Способы задания полей ионизирующих излучений

1.2.11.1. Характеристики полей ионизирующих излучений, применяемых при измерениях радиометрических параметров ППД, должны соответствовать установленным в настоящем стандарте и НТД на ППД конкретных типов.


Основные справочные данные по применяемым радионуклидным источникам излучений приведены в справочном приложении 3.

Характеристики полей рентгеновского излучения должны соответствовать ГОСТ 8.348—79.

1.2.11.2. Плоскость излучающей поверхности источника непосредственного ионизирующего излучения и плоскость входного окна ППД располагают под углом Θ, установленным в методах измерения конкретных параметров ППД, либо параллельно (Θ= =0°). Оси симметрии источника непосредственно ионизирующего излучения и входного окна ППД должны находиться в одной плоскости.

Предел погрешности задания угла Ө не должен превышать ±3°.

Расположение источника ППД должно соответствовать приведенному на черт. 3.

Ө-средний угол падения новизарующего излучения; о-среднее расстояние между эходими окном ППД, и всточником ионизирующего излучения

Черт. 3

Расстояние между центром входного окна ППД и излучающей поверхностью источника должно удовлетворять неравенству*

$$\overline{\rho_1} \gg 3 \sqrt{l_R^2 + l_{H^-}^2},$$
 (5)

Неравенство (5) не относится к случаям, когда слой воздуха определенной толщины используют для изменения (формирования) поля ионизирующего излучения.

^{2 3}ax. 1167

где ρ₁ — расстояние между центром входного окна ППД и излучающей поверхностью источника, мм;

 l_{x} — максимальный размер входного окна ППД, мм;

ін — максимальный размер излучающей поверхности источника, мм.

При измерениях дискретной и аналоговой чувствительностей, а также дискретной эффективности регистрации ППД расстояние от излучающей поверхности источника до окружающих предметов в пределах полусферы, обращенной в сторону ППД, должно быть не менее ра-

Измерения энергетического разрешения и энергетического эквивалента толщины мертвого слоя по альфа-излучению проводят при пониженном давлении, определяемом по формуле

$$\Pi \leqslant \frac{0 \cdot l \eta_0}{\lambda \cdot \rho_1}$$
, (6)

где Л. — давление, Па;

т_ю — нормированное значение энергетического разрешения, кэВ:

 жэффициент потерь энергии ионизирующего излучения, кэВ·мм⁻¹·Па⁻¹ (кэВ·мм⁻¹·мм рт. ст.⁻¹). Для альфа-излучения λ=1,5·10⁻³ кэВ·мм⁻¹·Па⁻¹ (0,2 кэВ·мм⁻¹·мм рт. ст.⁻¹);

ρ₁ — среднее расстояние между источником и ППД, мм. 1.2.11.3. Расположение источника нейтронов и ППД должно соответствовать приведенному на черт. 4.

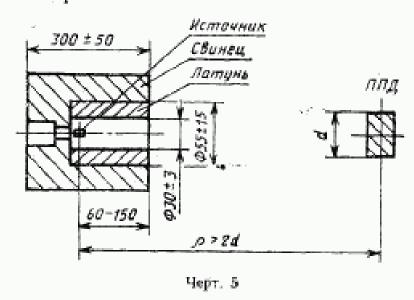
Черт. 4

Расстояние между источником и ППД должно удовлетворять неравенству

$$\rho_{2} \rightarrow 3\sqrt{h_{z}^{2} + h_{z}^{2}}, \qquad (7)$$

где ρ_2 — расстояние, мм:

 h_s — максимальный размер ППД в плоскости, перпендикулярной к оси AB, мм;


 h_и — максимальный размер источника в плоскости, перпендикулярной к осн AB, мм.

Поля тепловых нейтронов создают плутоний-альфа-бериллиевым источником быстрых нейтронов, помещенным в центр замедлителя — шара из парафина (парафин — по ГОСТ 23683—79) диаметром (150±5) мм.

Расстояние от источника нейтронов до окружающих предме-

тов должно быть не менее ρ_2 .

1.2.11.4. Поля гамма-излучения, предназначенные для измерения чувствительности регистрации, должны создаваться источником гамма-излучения, помещенным в коллимационный узел, изображенный на черт. 5.

Тип источника (значение энергии или название нуклида) должен соответствовать указанному в НТД на ППД конкретных типов.

Примечание. Допускается использовать установку градуировки дозиметров УПГД или другую установку, соответствующую требованиям ГОСТ 8.313—78.

 1.2.11.5. Поля непрерывного рентгеновского излучения, необходимые при измерениях чувствительности регистрации, должны создаваться на установках, соответствующих требованиям ГОСТ 8.348—79.

Способы создания импульсных полей рентгеновского излучения должны соответствовать указанным в НТД на ППД конкретных типов.

1.2.11.6. Плотность потока (или другую величину, характеризующую поток) ионизирующего излучения в месте расположения измеряемого ППД определяют либо расчетом, либо измерением ее соответствующим измерителем, имеющим погрешность измере-

ния в пределах, установленных методами измерения конкретных

параметров ППД.

1.2.11.7. Расчет плотности потока нонизирующего излучения в условиях геометрии, приведенной в пп. 1.2.11.2 и 1.2.11.3, в зависимости от способа аттестации источника проводят по формулам (8) или (9).

Для источников, аттестованных по активности,

$$\Phi = \frac{\phi A}{4\pi a^2}, \quad (8)$$

где Φ — плотность потока, част.·мм⁻²·c⁻¹;

— коэффициент выхода, част.-с-1.Бк-1;

А — активность источника, Бк;

расстояние между источником и ППД, мм.

Для источников, аттестованных по потоку частиц,

$$\Phi = \frac{B}{\varphi \rho^2}$$
, (9)

где В -- паспортное значение потока частиц источника в телесный угол, указанный в паспорте, част. с-1 (для тепловых нейтронов значение В составляет 12 % потока быстрых нейтронов источника);

ф — значение телесного угла, ср.

1.2.11.8. Для коллимированных пучков гамма-излучения (п. 1.2.11.4) мощность экспозиционной дозы в плоскости ППД рассчитывают по формуле

$$P = P_0 \frac{g_0^2}{g^2} \ . \tag{10}$$

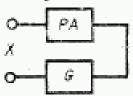
где P_0 — паспортное значение мощности — экспозиционной дозы на расстоянии ро, указанном в паспорте источника, мм.

1.2.11.9. При необходимости учета поправки на радиоактивный распад и на ослабление излучения в воздухе значения, рассчитанные по формулам (8) и (9), умножают на

$$\Delta_1 = e^{-(\mu p + \frac{0.7 \cdot t}{T_{1/2}})}$$
 ,

по формуле (10) — на

$$\Delta_a = e^{-(\mu_1(\phi - \phi_0) + \frac{0.7 \cdot t}{2})}$$


где µ — линейный коэффициент ослабления ионизирующего из-

лучения в воздухе, мм $^{-1}$; $T_{\cdot/t}$ — период полураспада нуклида, лет; t — промежуток времени между аттестацией источника проводимым измерением, лет.

2. МЕТОД ИЗМЕРЕНИЯ ТЕМНОВОГО ТОКА ППД

2.1. Аппаратура

 Измерение следует проводить на установке, структурная схема которой приведена на черт. 6.

X-входиме выводы установии; РА-измеритель востоянного тока; G-источник рабочего напряжения *Чеот. 6

 Предел допускаемой погрешности измерителя постоянного тока не должен превышать значений, установленных в табл. 2.

Таблица 2

Зпачение темнового тока $I_{\overline{A}\overline{\nu}}$, мк.А	Предел допускаемой погреш- ности измерителя тока бА, %	Максимальный ток утеч- ян изоляции I_{θ} , мк Λ
От 10-2 до 1 включ.	±9	0,03 /дт
Св. 1	±4	0,01 /дт

 Источник рабочего напряжения должен соответствовать требованиям разд. 1 настоящего стандарта.

2.2. Подготовка и проведение измерения

- 2.2.1. Перед измерением темнового тока ППД следует выдержать при заданной температуре окружающей среды или корпуса ППД не менее 30 мин.
- 2.2.2. ППД подключают к входным выводам измерительной установки.
- 2.2.3. На входных выводах устанавливают заданное рабочее напряжение.

2.2.4. Отмечают показания измерителя тока.

2.3. Показатели точности измерения

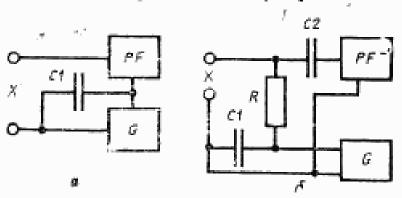
2.3.1. Относительная погрешность измерения темнового тока с установленной вероятностью 0,99 находится в интервалах: ±10 % для темновых токов до 1 мкА, ±5 % — для темновых токов более 1 мкА.

3. МЕТОДЫ ИЗМЕРЕНИЯ ЕМКОСТИ ППД

 3.1. Настоящий стандарт устанавливает два метода измерения емкости ППД;

метод 1 применяют для измерения емкости ППД от 1 до 5000 пФ при рабочем напряжении более 10 В. Метод основан на использовании гармонического сигнала и отличается повышенной точностью измерения емкости ППД свыше 10 пФ;

метод 2 применяют для измерения емкости ППД более 20 пФ. Метод основан на определении емкости ППД по амплитуде импульса заряда, передаваемого через ППД на вход ЗУ, и отличается повышенной производительностью.


3.2. Метод **і**

3.2.1. Аппаратура

3.2.1.1. Измерение следует проводить на установке, структур-

ная схема которой приведена на черт. 7а или 76.

Схему черт. 7а применяют в случае использования измерителя емкости, имеющего гальваническую связь между входными выводами (например через катушку индуктивности) и допускающего протекание темнового тока ППД через входные выводы. В остальных случаях следует применять схему черт. 76.

X—входные выводы установки; CI—блокирующий вонленсатор; P^F —намеритель емкости: G—источник рабочего изприжения; R—рехистор утечки: C2—разделительный конденсатор

Черт, 7

3.2.1.2. Емкость блокирующего и разделительного конденсатотора должна быть не менее 100 $C_{\rm sr}$, где $C_{\rm sr}$ — емкость ППД,

3.2.1.3. Измеритель емкости должен иметь пределы измерения емкости от 1 до 5000 пФ и рабочую частоту (500 ± 200) кГц.

Погрешность измерителя должна быть в пределах, установленных в табл. 3.

	Таблица З
Значевие измеряемой емкости, пФ	Предел погрешности измерителя. %
От 1 до 2,5 включ.	$\pm \left(\frac{10}{C_{a\tau}} + 5\right)$
Св. 2,5 до 10 віключ.	$\pm \left(\frac{5}{C_{\Delta T}} + 5\right)$
Св. 10 до 5000 включ.	$\pm \left(\frac{40}{C_{ar}} + 0.5\right)$

3.2.1.4. Источник рабочего напряжения должен соответствовать требованиям разд. 1.

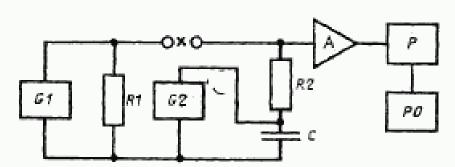
3.2.1.5. Сопротивление резистора утечки должно быть (100±

±10) кОм.

3.2.2. Подготовка и проведение измерений

- 3.2.2.1. Устанавливают нулевые показания измерителя емкости.
 - 3.2.2.2. ППД подключают к входным выводам установки.
- 3.2.2.3. На входные выводы подают рабочее напряжение от источника рабочего напряжения.

3.2.2.4. Измерителем емкости отсчитывают значение емкости


ппд.

3.2.3. Показатели точности измерений

 3.2.3.1. Погрешность измерения емкости с установленной вероятностью 0,99 находится в интервале:

±15 % — для емкости ППД менее 2 пФ;

- ±10 % для емкости от 2 до 4 пФ включительно;
- $\pm (\frac{35}{C_{17}} + 0.5)$ % для емкости ППД свыше 4 пФ.
- 3.3. Метод 2
- 3.3.1. *Annaparupa*
- 3.3.1.1. Измерение следует проводить на установке, структурная схема которой приведена на черт. 8.

GI—генератор импульсов; RI—резистор вагрови генератора; X—выводы для подключения $\Pi I \Pi \Pi$; G2—всточник рабочего выпряжения; R2—резистор утечки; C—блокируй ший вонденситор: A—3V; P—вимеритель амилитуды; P0— выпректор нуля

Черт. 8.

3.3.1.2. Генератор импульсов должен обеспечивать на резисторе нагрузки генератора импульсы экспоненциальной формы с постоянной времени не менее 10 т и длительностью фронта нарастания не более 0,3 т, где т — постоянная времени формирования переходной характеристики ЗУ, мкс.

Скважность импульсов должна быть в пределах от 3 до 30.

Амплитуда напряжения импульсов должна быть не более 5 % рабочего напряжения и не более 1 В.

3.3.1.3. Сопротивление резистора нагрузки генератора должно удовлетворять неравенству

$$R1 \le 2 \cdot 10^6 \frac{\tau}{C_{xx}}$$
, (11)

где R1 — сопротивление резистора нагрузки генератора, Ом;

 постоянная времени формирования переходной характеристики, мкс;

 C_{AT} — емкость ППД, пФ.

Сопротивление резистора утечки должно соответствовать п. 1.2.7.

3.3.1.4. Источник рабочего напряжения, зарядочувствительный усилитель и конденсатор должны соответствовать требованиям

разд. 1 настоящего стандарта.

3.3.1.5. Измеритель амплитуды должен обеспечивать ликейное преобразование амплитуды сигнала переходной характеристикой, указанной на черт. 2, в выходной сигнал, представляемый в аналоговой или цифровой форме.

3.3.1.6. Система ЗУ — измеритель амплитуды должна быть проградуирована в пикофарадах. Градуировка производится путем подключения к выводам X конденсаторов, емкость которых

известна с погрешностью в пределах ±2 %.

Расхождение между показаниями измерителя амплитуды и измеренным значением емкости конденсатора не должно выходить за пределы ±3 %.

3.3.1.7. Корректор нуля включают в схему при необходимости для установки нулевых показаний измерителя амплитуды при отсутствии ППД на входе.

3.3.2. Подготовка и проведение измерений

3.3.2.1. Корректором нуля устанавливают нулевые показания.

 $3.3.2.2.\ \Pi\Pi\Pi$ подключают к выводам X.

- 3.3.2.3 На выводе X устанавливают заданное рабочее напряжение
- 3.3.2.4. Отсчитывают показания измерителя, проградуированного в пикофарадах.

3.4. Показатели точности измерения

3.4.1. Погрешность измерения емкости находится в интервале ±5 % с установленной вероятностью 0,99.

4. МЕТОД ИЗМЕРЕНИЯ ЭНЕРГЕТИЧЕСКОГО РАЗРЕШЕНИЯ

4.1. Аппаратура

4.1.1. Измерения следует проводить на установке, структурная

схема которой приведена на черт. 9.

4.1.2. ЗУ, резистор утечки, блокирующий конденсатор и источник рабочего напряжения должны соответствовать разд. 1 настоящего стандарта.

И-меточник новизирующего излучения; X-кходяние выводы установки; СІ-домирующий конденсатор; R-резистор утечки; С2-блокирующий конденсатор; G1-теператор импульсов напряжения; A-3У; G2-источник рабочего напряжения; АЕ-масцизабный преобразователь; РЕ-амплитудный анализатор

Черт. 9

 Дозирующий конденсатор должен иметь емкость от 1 до 10 пФ, но не более 0.1 $C_{\rm av}$, и температурный коэффициент в пределах $\pm 10^{-2}$, %- $^{\circ}$ C⁻¹.

4.1.4. Форма импульсов генератора G1 должна соответствовать п. 3.3.1.2. Частота следования импульсов должиз быть от 10 до 1000 Fu.

Амплитуда импульсов генератора должна удовлетворять условинм:

$$U_{\rm r} > \frac{\chi E_{\rm n}}{GI}$$
, (12)
 $U_{\rm r} \geqslant 5 \frac{\chi}{GI} V \overline{E_{\rm m,ar}^2 + E_{\rm m,c}^2}$,

где U_{τ} — амплитуда импульсов, мкВ;

χ — коэффициент преобразования, аКл-кэВ⁻¹;
 С1 — емкость дозирующего конденсатора, пФ;

 $E_{w,z}$ — норма на шум ППД, установленная в НТД, кэВ: — норма на собственный шум усилительно-регистрирующего тракта, установленная в НТД, кэВ:

Е. — порог масштабного преобразования, кэВ.

Среднее квадратическое отклонение (нестабильность) амилитуды импульсов генератора за время проведения измерения не должно превышать

$$\delta_{n} \ll \frac{10\chi E_{w,c}}{U_{\text{F}} \cdot Cl} \tag{13}$$

гле 🐧 — нестабильность амплитуды, %.

4.1.5. Масштабный преобразователь должен вырабатывать импульсы по форме, полярности и днапазону амплитуд, соответствующие параметрам амплитудного анализатора.

4.1.6. Число каналов амплитудного анализатора должно быть не менее 1000, емкость каждого канала анализатора должна быть

не менее 10000 импульсов.

4.1.7. Усилительно-регистрирующий тракт, состоящий из масштабного преобразователя и амплитудного анализатора (далее— УРТ), должен быть настроен таким образом, чтобы часть амплитудного спектра, используемого для измерения, регистрировалась на участке между 10 и 90 % числа каналов амплитудного анализатора, при этом ширина канала УРТ должна составлять не более 5 % нормы на энергетический эквивалент шума ППД, установленной в НТД для условий измерения энергетического разрешения.

Ширина канала должна быть определена согласно обязатель-

ному приложению 4 с погрешностью в пределах ±5 %.

Общий вид гистограммы распределения амплитуд импульсов должен соответствовать приведенному в НТД на ППД конкретных типов.

4.1.8. Допустимое изменение положения максимума пика амплитудного распределения вследствие изменения частоты следования импульсов должно быть в пределах ± 2 канала при частоте импульсов от 10 Γ ц до $f_{max} = \frac{5}{\pi}$ и амплитуде импульсов, превышающей порог масштабного преобразования, где f_{max} — максимальная частота, к Γ ц; τ — постоянная времени формирования переходной характеристики 3V, мкс.

4.1.9. Плотность потока ионизирующего излучения должна быть такой, чтобы средняя скорость счета импульсов, поступающих в амплитудный анализатор, была в пределах от 10 имп. с⁻¹

до 1/s f_{max}.

Собственная ширина линин, испускаемой источником непосредственно нонизирующего излучения, должна составлять не более 1/3 нормы на энергетическое разрешение, указанной в НТД.

Конкретный радионуклид, применяемый для измерения, указывают в НТД.

- 4.2. Подготовка и проведение измерений
- 4.2.1. Периодически определяют ширину канала путем калибровки согласно обязательному приложению 4 и собственный шум УРТ согласно разд. 5. Периодичность определения ширины канала должна соответствовать заданной в эксплуатационной документации на установку.
- 4.2.2. ППД и источник ионизирующего излучения устанавливают следующим образом:

для непосредственно ионизирующих излучений в условиях свободной геометрии по п. 1.2.11 при $\Theta_0 = 0$ °;

для фотонных излучений — согласно указаниям, приведенным в НТЛ.

4.2.3. ППД подключают к входным выводам установки.

- 4.2.4. Создают климатические условия измерения, указанные в НТД.
- 4.2.5. На входных выводах устанавливают рабочее напряжение.
- 4.2.6. Проводят набор информации амплитудным анализатором в течение времени, достаточного для набора не менее 5000 импульсов в канале, соответствующем максимуму пика полного поглощения энергии ионизирующего излучения.
- 4.2.7. На гистограмме распределения амплитуд импульсов, построенной амплитудным анализатором, находят пик полного поглощения и определяют число каналов на половине его высоты $N_{\rm Atm}$ (черт. 10).

4.3. Обработка результатов измерений

4.3.1. Энергетическое разрешение ППД рассчитывают по формуле

 $\gamma = H \cdot N_{\text{av.n}} \,. \tag{14}$

Если N_c — число каналов на половине высоты импульса генератора при определении собственного шума УРТ по п. 5.3.2.5 составляет более 1/3 $N_{\rm дт. H}$, то расчет проводят по формуле

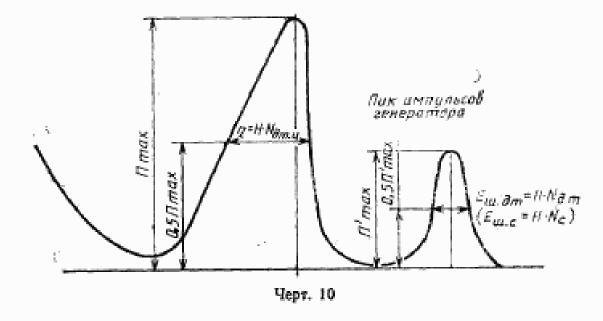
$$\eta = H \sqrt{N_{Ar,u}^2 - N_c^2},$$
(15)

где тде п — энергетическое разрешение, къВ;

— ширина канала, кэВ на канал;
 N_{дт.н} — число каналов в пике полного поглощения на половине высоты;

N_c — число каналов на половине высоты импульса генератора при определении собственного шума УРТ по п. 5.3.2.5.

4.4. Показатели точности измерений


4.4.1. Границы интервала, в которых с установленной вероятностью 0,99 находится погрешность измерения, должны соответствовать установленным в НТД на ППД конкретных типов из ряда ± 1.0 ; ± 1.2 ; ± 1.5 ; ± 2.0 ; ± 2.5 ; ± 3.0 ; ± 4.0 ; ± 5.0 ; ± 6.0 ; ± 7.5 с коэффициентом 10^n , кэВ (n- целое число от минус 3 до плюс 3), но не более 0,25 нормы на энергетическое разрешение, установленной в НТД.

4.4.2. Значение границ интервала рассчитывают по формуле

$$\Delta \eta = \pm 86 \cdot 10^{-4} \sqrt{(\eta^3 + H^3 \cdot N_c^2)(60 + \frac{2500}{N_{\text{at.4}}^2})}, \tag{16}$$

где Дп - граница интервала, квВ.

В случае расчета энергетического разрешения ЩO (15) значения границ интервала рассчитывают по формуле

$$\Delta' \eta = \Delta \eta \cdot \frac{N_{\text{AV.B}}}{V N_{\text{AV.B}}^2 - N_{\text{c}}^2} \tag{17}$$

Значения, полученные по формулам (16) и (17), округляют до ближайшего большего значения из ряда, приведенного в п. 4.4.1.

5. МЕТОДЫ ИЗМЕРЕНИЯ ЭНЕРГЕТИЧЕСКОГО ЭКВИВАЛЕНТА ШУМА

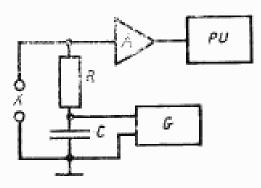
Настоящий стандарт устанавливает два метода измерения

энергетического эквивалента шума (далее — шум ППД): метод I (основной) — для ППД, для материала которых установлено значение коэффициента преобразования. Метод предусматривает сравнение шума ППД с тепловым шумом резистора;

метод 2 — для совмещенных измерений шума и энергетического разрешения спектрометрических ППД.

5.2. Метод 1

5.2.1. Annaparypa


5.2.1.1. Измерение шума ППД следует проводить на

ке, структурная схема которой приведена на черт. 11.

5.2.1.2. ЗУ, источник рабочего напряжения, резистор утечки и блокирующий конденсатор должны соответствовать требованиям разд. 1 настоящего стандарта.

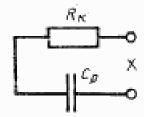
 5.2.1.3. Измеритель среднего квадратического значения переменного напряжения должен соответствовать требованиям, установ-

ленным в табл. 4.

X—выводы для подилючения ППЛ: R—реанстор утечин; C—бло-кирующий конденсатор; A—3V; G—неточник рабочего напряжения; PU—измеритель среднего квадратического значения переменного напряжения

Черт. 11

Таблица 4


Постоянная пременя форми- рования переходной характе- ристики зарадочувствительно- го усилителя, мкс	Днавезон рабочих частот измерителя напряжения, МГи	Предел допускаемой по- срешности измерителя на пряжения, %
0,05 0,10	110 0,55,0	±25 ±15
0,20 0,50 1,00	0,25—2,5 0,10—1,0	±12 ±8
1,00 2,00 5,00	0,050,50 0,0250,25 0,010,10	±8 ±8 ::-8
10,00	0,0050,05	R

5.2.2. Подготовка и проведение измерений

 5.2.2.1. Калибровку установки и определение собственного шума ЗУ проводят периодически.

Периодичность калибровки должна соответствовать установленной в эксплуатационной документации на установку.

Для калибровки используют цепь, изображенную на черт. 12, которую подключают на период калибровки к выводам X.

R_к-калибровочный реакстор: С_рразделительный кондеясатор Черт, 12

Калибровочный резистор должен соответствовать требованиям ΓΟCT 7113—77.

Сопротивление калибровочного резистора должно быть в пределах

$$\frac{\tau}{6C_{\rm AT}} \ll R_{\rm K} \ll \frac{\beta^2 \tau}{E_{\rm m.c.}^2} , \qquad (18)$$

где т - постоянная времени формирования переходной харак-

теристики ЗУ, мкс; — максимальное значение емкости ППД, установленное

 R_s — сопротивление калибровочного резистора, МОм; β — шумовая постоянная, кэВ-п $\Phi^{-0.5}$ (для кре $\beta = 6.4$ кэВ·п $\Phi^{-0.5}$, для германия — 5.3 кэВ·п $\Phi^{-0.5}$); $E_{\text{m.e}}$ — собственный шум ЗУ, указываемый в НТД на уста-

новку, кэВ.

Сопротивление калибровочного резистора должно быть известно с погрешностью в пределах ±2 %.

Емкость разделительного конденсатора должна быть не менее $100 C_{xr}$.

Определяют калибровочный коэффициент по формуле

$$K = \frac{\sqrt{U_{\kappa}^2 - U_0^2}}{\beta} \cdot \sqrt{\frac{R_{\kappa}}{\tau}}, \qquad (19)$$

где K — калибровочный коэффициент, B-кэB-1;

 U_* — показания измерителя напряжения при подключении на вход установки калибровочной цепи, В;

 U_0 — показания измерителя напряжения при свободных входных выводах, В.

Ко входным выводам установки подключают конденсатор, емкость которого равна $C_{\rm av}$. Определяют собственный шум ЗУ по формуле

$$E_{\text{tr.c}} = \frac{U_{\text{tr.c}}}{k}$$
, (20)

где $U_{\mathrm{m-c}}$ — показания измерителя напряжения при подключении к входным выводам установки конденсатора, емкость которого равна C_{zz} , В.

5.2.2.2. К входным выводам установки подключают ППД.

5.2.2.3. На входные выводы установки подают рабочее напряжение.

5.2.2.4. Отмечают показания измерителя напряжения $U_{
m m,xr}$

5.2.3. Обработка результатов измерения

5.2.3.1. Шум ППД рассчитывают по формуле

$$E_{\text{m.ar}} = \frac{U_{\text{m.ar}}}{K}, \qquad (21)$$

где $E_{w.a\tau}$ — шум ППД, кэВ; $U_{w.a\tau}$ — показания измерителя напряжения В. Если $U_{w.a\tau}$ <3 $U_{w.c}$, то шум рассчитывают по формуле

$$E_{\text{us.ar}} = \sqrt{\frac{U_{\text{us.ar}}^2 - E_{\text{us.c}}^2}{K^2}} - . \tag{22}$$

5.2.4. Показатели точности измерений

5.2.4.1. Границы интервала, в которых с установленной вероятностью 0,99 находится погрешность измерения, должны соответствовать установленным в НТД на ППД конкретных типов из ряда: ± 1.0 ; ± 1.2 ; ± 1.5 ; ± 2.0 ; ± 2.5 ; ± 3.0 ; ± 4.0 ; ± 5.0 ; ± 6.0 ; ± 7.5 с коэффициентом 10^n (n—целое число от минус 3 до плюс 3), кэВ, но не более 0,25 нормы на шум ППД, установленной в НТД.

5.2.4.2. Значения границ интервала рассчитывают по формуле

$$\Delta_{\rm m} = \pm 86 \cdot 10^{-4} \sqrt{(E_{\rm m,gr}^2 + E_{\rm m,c}^2)(\delta_{\rm s}^2 + 27)}, \tag{23}$$

где Δ_{∞} — граница интервала, кэB;

 $E_{\text{ш.дт}}$ — шум ППД, кэВ;

ъ
погрешность: измерителя напряжения, %.

В случае расчета шума по формуле (22) значения границ интервала рассчитывают по формуле

$$\Delta'_{\mathrm{m}} = \Delta_{\mathrm{m}} \cdot \frac{E_{\mathrm{m,q,\tau}}}{\sqrt{E_{\mathrm{m,q,\tau}}^2 - E_{\mathrm{m,q}}^2}} . \tag{24}$$

Значения, полученные по формулам (23) и (24), округляют до ближайшего большего значения из ряда п. 5.2.4.1.

5.3. Метод 2

5.3.1. Аппаратура .

 5.3.2.1. Периодически измеряют собственный шум усилителя. 4 настоящего стандарта.

5.3.2. Подготовка и проведение измерений

 5.3.2.1. Периодически измеряют собственный шум усилителя. Периодичность измерения должна соответствовать установленной в эксплуатационной документации на установку. Измерение проводят при подключении на входиме выводы установки конденсатора, емкость которого равна N _с .

На гистограмме распределения амплитуд импульсов, построенной амплитудным анализатором (черт. 10), определяют ширину амплитудного распределения импульсов генератора на половине высоты.

5.3.2.2. Ко входным выводам установки подключают ППД.

- 5.3.2.3. На входных выводах устанавливают рабочее напряжение.
- 5.3.2.4. Производят набор информации амплитудным анализатором. Если одновременно измеряют энергетическое разрешение, то частоту и амплитуду импульсов генератора устанавливают такой, чтобы огибающие пика импульсов генератора и пика полного поглощения ионизирующего излучения на полученной гистограмме пересекались не более чем на 1/3 высоты пиков и соблюдались условия п. 4.1.4.

Набор информации проводят в течение времени, достаточного

для набора 10000 импульсов.

5.3.2.5. На гистограмме, построенной амплитудным анализатором, определяют число каналов на половине высоты пика импульсов генератора $N_{\rm st}$ (черт. 10).

5.3.3. Обработка результатов измерений

5.3.3.1. Шум ППД рассчитывают по формуле

$$E_{\text{m.at}} = H \cdot N_{xx}, \qquad (25)$$

где H — ширина канала, к9В на канал;

 $N_{\rm ar}$ — число каналов на половине высоты инка импульсов генератора.

Если $N_c \gg \frac{1}{3} N_{\rm ar}$, то расчет проводят по формуле

$$\hat{E}_{m,qr} = H \sqrt{N_{pr}^2 - N_c^2}$$
 (26)

5.3.4. Показатели точности измерений

5.3.4.1. Относительная погрешность измерения шума находится в интервале ±12 % с установленной вероятностью 0,95.

6. МЕТОД ИЗМЕРЕНИЯ ЭНЕРГЕТИЧЕСКОГО ЭКВИВАЛЕНТА ТОЛЩИНЫ МЕРТВОГО СЛОЯ

6.1. Аппаратура

6.1.1. Измерение энергетического эквивалента толщины мертвого слоя (далее — ЭМС) следует проводить на установке, структурная схема которой приведена на черт. 9. Измерение, как правило, совмещают с измерением энергетического разрешения.

6.1.2. В измерительной установке должна быть обеспечена возможность установления значений угла падения ионизирующего излучения Ө₀=0° и Ө₁ −60° без нарушения климатических условий и изменения среднего расстояния между центрами входного окна ППД и излучающей поверхностью источника.

 6.1.3. Измерения проводят с источниками непосредственно нонизирующего излучения. Энергия ионизирующего излучения должна не менее чем в 10 раз превышать норму на ЭМС, установленную в НТД.

В случае применения источника электронов поток ионизирующего излучения должен быть коллимирован в один или несколько пучков диаметром не более 1/10 диаметра (диагонали) входного окна ППЛ.

6.2. Подготовка и проведение измерений

- 6.2.1. Выполняют действия по пп. 4.2.1-4.2.6, при этом число импульсов в канале, соответствующем пику полного поглощения, должно быть не менее 1000.
- 6.2.2. Определяют номер канала N_1 , где регистрируется максимум пика полного поглощения.
- 6.2.3. Угол падения ионизирующего излучения устанавливают $\Theta_1 = 60^{\circ}$.
- 6.2.4. Выполняют п. 4.2.6, при этом число импульсов в канале, соответствующее максимуму пика полного поглощения, должно быть не менее 1000.
- 6.2.5. Определяют номер канала N_2 , где регистрируется максимум пика полного поглощения.
 - 6.3. Обработка результатов
 - 6.3.1. ЭМС рассчитывают по формуле

$$\Delta_E = H(N_2 - N_1), \tag{27}$$

где ДЕ — ЭМС, кэВ;

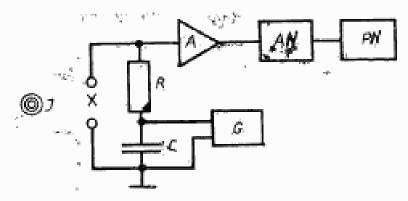
— ширина канала, кэВ на канал;

 N_1, N_2 — номера каналов, где зарегистрирован максимум пика полного поглощения.

6.4. Показатели точности измерений

6.4.1. Погрешность измерения ЭМС находится в интервале ±25 % с установленной вероятностью 0,95.

7. МЕТОД ИЗМЕРЕНИЯ ДИСКРЕТНОЙ ЧУВСТВИТЕЛЬНОСТИ РЕГИСТРАЦИИ


7.1. Аппаратура

7.1.1. Измерение дискретной чувствительности регистрации следует проводить на установке, структурная схема которой приведе-

на на черт. 13.

7.1.2. Источник ионизирующего излучения должен обеспечивать в месте расположения ППД плотность потока излучения (мощность дозы излучения) такую, чтобы средняя частота регистрации импульсов была в пределах от 7 имп. c^{-1} до $\frac{1}{3}$ максимальной частоты регистрации, указанной в табл. 5.

Энергию, вид излучения и (или) радионуклид указывают в НТД.

I—всточник ионизирующего налучения; X—входиме выводы установки; R—резистор; C—кондевсятор; A—ЗУ; G—неточник рабочего напряжения; AN—нитегральный дискримиватор; PN—счетчик импульсов

Черт. 13

Таблаца 5

	140222
Наименование показателя	Норма
Порог дискриминации, приведен- ный ко входу ЗУ, фКл	Устававлявают в НТД из ряда 1,0; 1,2; 1,5; 2,0; 2,2; 2,7; 3,3; 4,0; 4,5; 5,0; 6,0; 7,5; с коэффициентом 10^{4} ($n=-1;$ 0; 1; 2)
Погрешность установления и под- держания порога дискриминации, %	В пределах ±10
Относительная крутизна амплитуд- ной характеристики	Не менее 5
Максимальная частота регистрации периодических импульсов, кГц	f max = $\frac{40}{\tau + 0.05}$ где τ — постоянная времени формирования переходной характеристики зарядочувствительного усилителя, мкс
Динамический днапазон амплитуд	Не менее 3;

Плотность потока или мощность экспозиционной дозы нонизирующего излучения в месте расположения ППД должна быть определена согласно п. 1.2.11 с погрешностью, находящейся в пределах значений, установленных в HTД, из ряда: ± 1.0 ; ± 1.5 ; ± 2.0 ; ± 3.0 ; ± 4.0 ; ± 5.0 ; ± 7.0 ; ± 10.0 ; ± 12.0 %.

7.1.3. УРТ, состоящий из ЗУ, интегрального дискриминатора и счетчика импульсов, должен соответствовать требованиям, приведенным в табл. 5.

7.1.4. Источник рабочего напряжения, ЗУ, резистор и конден-

сатор должны соответствовать требованиям разд. 1.

7.1.5. Каждому срабатыванию интегрального дискриминатора должен соответствовать 1 импульс на выходе дискриминатора. Форма, амплитуда и полярность выходного импульса дискриминатора должны соответствовать требованиям ко входным сигналам счетчика импульсов.

Если счетчик импульсов содержит внутренний интегральный дискриминатор, который обеспечивает требования табл. 5, то допускается использовать его в качестве дискриминатора.

7.1.6. Емкость счета в основном канале счетчика импульсов

должна быть не менее 9999 импульсов.

Счетчик импульсов должен быть снабжен таймерным устройством, обеспечивающим заданную экспозицию с погрешностью в пределах ±0.5 %.

7.2. Подготовка и проведение измерений

7.2.1. Экспозицию Т, с, вычисляют по формуле

$$T \gg \frac{2000}{f_{cp}}$$
, (28)

где f_{∞} — средняя частота регистрируемых импульсов, с⁻¹.

7.2.2. Выполняют действия по пп. 4.2.3—4.2.5.

Прекращают поток ионизирующего излучения.

7.2.4. Таймерным устройством включают счетчик импульсов на время T и отсчитывают число фоновых импульсов n_{\triangle} .

7.2.5. Создают поток ионизирующего излучения.

7.2.6. Таймерным устройством включают счетчик импульсов на время Т и отсчитывают число импульсов п, .

7.3. Обработка результатов

7.3.1. Дискретную чувствительность регистрации вычисляют по формуле

$$\sigma = \frac{n_s - n_{\Phi}}{P \cdot T} , \qquad (29)$$

где
 дискретная чувствительность регистрации, имп.: P-1 или имп. см² част. -1:

п. — число импульсов, зарегистрированных при расположении ППД в поле ионизирующего излучения;

 n_{ϕ} — число фоновых импульсов: P — мощность дозы, $P \cdot e^{-1}$, или плотность потока, част-см-2-с-1

Если заранее известна средняя частота следования фоновых импульсов f_0 , то принимают $n_{\phi} = f_0 T$. Если T < 10 с, то n_{ϕ} принимают равным нулю. В этих случаях

действия по п. 7.2.3 не выполняют.

7.4. Показатели точности измерений

7.4.1. Границы интервала, в которых с установленной вероятностью 0,99 находится погрешность измерения, должны соответствовать установленным в НТД на ППД конкретных типов из ряда: ± 2.5 ; ± 5.0 ; ± 10.0 ; ± 12.0 ; ± 15.0 ; ± 20.0 ; ± 25.0 %.

7.4.2. Значения границ интервала вычисляют по формуле

$$\delta_{\sigma} = \pm 0.86 \sqrt{\delta_{P}^{2} + 125 K_{E}^{2} + 5}$$
 (30)

где о. -- граница интервала, %;

 бр — предел погрешности определения мощности дозы или плотности потока нонизирующего излучения, %:

Ке — коэффициент влияния расстройки порога дискриминации на скорость счета импульсов, указанный в НТД на ППД конкретного типа.

Значения, полученные по формуле (30), необходимо округлить до ближайшего большего значения из ряда п. 7.4.1.

8. МЕТОД ИЗМЕРЕНИЯ ДИСКРЕТНОЙ ЭФФЕКТИВНОСТИ РЕГИСТРАЦИИ

 Аппаратура, подготовка, проведение измерений и показатели точности измерения дискретной эффективности регистрации должны соответствовать требованиям разд. 7.

8.2. Обработка результатов измерений

8.2.1. Дискретную эффективность регистрации є, %, вычисляют по формуле

$$\epsilon = \frac{n_a - n_{\oplus}}{PTS} \cdot K_{\bullet} \cdot 100, \qquad (31)$$

где S — площадь поверхности внешнего контура $\Pi\Pi \Pi$, указанная в НТД, см²;

Ko — безразмерный коэффициент, указанный в НТД, учитывающий часть импульсов, имеющих амплитуду меньше порога дискриминации.

Если заранее известна средняя частота следования фоновых импульсов \hat{f}_0 , то принимают $n_{\Phi} = f_0 T$.

Если T < 10 с, то принимают $n_b = 0$. В этих случаях действия по п. 7.2.3 не выполняют.

8.3. Показатели точности измерений

Относительную погрешность измерений дискретной эффективности определяют по п. 7.4.

9. МЕТОД ИЗМЕРЕНИЯ СРЕДНЕЙ ЧАСТОТЫ СЛЕДОВАНИЯ фоновых импульсов

- 9.1. Аппаратура должна соответствовать разд. 7, за исключевнем источника ионизирующего излучения, который из установки нсключают.
- 9.2. Подготовка и проведение измерений по п. 7.2.2. Если измерение средней частоты следования фоновых импульсов проводят отдельно от измерения дискретной чувствительности или эффективности регистрации, то экспозицию устанавливают не менее 100 c.
 - 9.3. Обработка результатов измерения
- 9.3.1. Среднюю частоту следования фоновых импульсов f_0 , c^{-1} , вычисляют по формуле

$$f_0 = \frac{n_{\Phi}}{T}$$
, (32)

тде n_{ϕ} — число фоновых импульсов; T — экспозиция, с.

- 9.4. Показатели точности измерений
- 9.4.1. Погрешность измерения средней частоты следования фоновых импульсов находится в пределах $\pm (260/V n_b)$, %, с установленной вероятностью 0.99.

10. МЕТОД ИЗМЕРЕНИЯ РАДИАЦИОННОЙ ПОМЕХОУСТОЙЧИВОСТИ

- 10.1. Измерение дискретной чувствительности регистрации основного и сопутствующего излучений следует проводить согласно разд. 7 при одинаковых порогах дискриминации и постоянных времени формирования переходной характеристики ЗУ.
 - 10.2. Обработка результатов измерения
- 10.2.1. Радиационную помехоустойчивость), вычисляют по формуле

$$\lambda = \frac{\sigma_0}{\sigma_c}$$
, (33)

- где σ_0 дискретная чувствительность регистрации основного излучения, имп. P-1 или имп. см2.част.-1;
 - σ_c дискретная чувствительность регистрации сопутствующего излучения, имп.: Р-1 или имп.:см2-част.-1;

Примечание. Если одним из излучений является фотонное излучение, и дискретная чувствительность выражена в имп. Р-1, то значение этой чувствительности умножают на согласующий множитель, равный $5 \cdot 10^{-13} E_{\tau}$, Р-см²-част.-1, где Е., -- энергия гамма-излучения от 30 до 2000 кэВ.

10.3. Показатели точности намерений

10.3.1. Границы интервала, в которых с установленной вероятностью 0,99 находится погрешность измерения, должны соответствовать установленным в НТД на ППД конкретных типов из ряда: ±10.0; ±15.0; ±20.0; ±25.0 %.

10.3.2. Значения границ интервала вычисляют по формуле

$$\delta_1 = \pm \sqrt{\delta_{\sigma_0}^2 + \delta_{\sigma_0}^2}, \qquad (34)$$

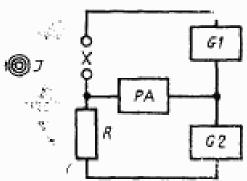
где 👌 — погрешность измерения, %;

δ_{σ₀}, δ_{σ_c} — погрешности измерения основного и сопутствующего излучений согласно п. 7.4, %.

Значения, полученные по формуле (34), необходимо округлить до ближайшего большего значения из ряда п. 10.3.1.

11. МЕТОДЫ ИЗМЕРЕНИЯ АНАЛОГОВОЙ ЧУВСТВИТЕЛЬНОСТИ

 Настоящий стандарт устанавливает два метода измерения аналоговой чувствительности ППД;


метод 1 применяют при наличии источника непрерывного потока ионизирующего излучения, обеспечивающего плотность потока (мощность дозы) ионизирующего излучения, достаточную для генерации в чувствительной области ППД ионизационного тока, составляющего не менее 10⁻² темнового тока ППД:

метод 2 применяют при наличии источника импульсного ионизирующего излучения и ППД-моннтора с заранее измеренной аналоговой чувствительностью.

11.2. Метод 1

11.2.1. Аппаратура

 11.2.1.1. Измерение аналоговой чувствительности следует проводить на установке, структурная схема которой приведена на черт. 14.

I—источник моюнзирующего излучения; X—входиме излоды установки; R—компексационный резистор; PA—измеритель тожа; GI—источник рабочего изприжения; G2—источник компексарующего изприжения

Черт. 14

11.2.1.2. Если ионизационный ток составляет 20 и более процентов темнового тока ППД, допускается исключать из установки источник компенсирующего напряжения и компенсационный резистор.

11.2.1.3. Сопротивление компенсационного резистора должно быть больше внутреннего сопротивления измерителя тока не ме-

нее чем в 10⁸ раз.

11.2.1.4. Источник рабочего напряжения должен соответствовать требованиям разд. 1 настоящего стандарта.

- 11.2.1.5. Источник компенсирующего напряжения совместно с компенсирующим резистором должен обеспечивать протекание через измеритель тока, равного по значению и противоположного по знаку темновому току ППД. Требования к пульсациям и стабильности источника компенсирующего напряжения должны соответствовать п. 1.2.5.
- Погрешность измерителя тока должна быть в пределах, vстановленных в табл. 6.

	Таблица б
Диапизон новизационного тока, мкА	Предол погрешности измерителя, %
Менее 0,1 От 0,1 до 1 включ, Св. 1	±15 ±10 ±5

- 11.2.1.7. Источник ионизирующего излучения и создаваемое им. поле должиы соответствовать разд. 1.
 - 11.2.2. Подготовка и проведение измерений
- 11.2.2.1. ППД выдерживают в климатических условиях, указанных в НТД.
- 11.2.2.2. ППД подключают к входным выводам измерительной установки.
- 11.2.2.3. На входные выводы установки подают рабочее напряжение.
- 11.2.2.4. ППД выдерживают при рабочем напряжении без воздействия поля ионизирующего излучения в течение времени, указанного в НТД.
- 11.2.2.5. Изменяя напряжение источника компенсирующего напряжения или сопротивление компенсационного резистора, добиваются нулевых показаний измерителя тока, кроме случая, указанного в п. 11.2.1.2.
- 11.2.2.6. Создают поле ионизирующего излучения и синмают показания измерителя тока.
 - 11.2.3. Обработка резильтатов измерений

11.2.3.1. Аналоговую чувствительность вычисляют по формуле

$$\Sigma = \frac{I_{it}}{P}$$
, (35)

где Σ — аналоговая чувствительность, Кл см² част. $^{-1}$ или Кл P^{-1} ;

 $I_{\rm H}$ — ток разбаланса, равный ионизационному току, А; P — плотность потока или мощность дозы ионизирующего излучения, част. см-2-с-1 или P-с-1.

11.2.3.2. Аналоговую чувствительность в случае отсутствия схеме источника компенсирующего напряжения и компенсационного резистора (п. 11.2.1.2) вычисляют по формуле

$$\Sigma = \frac{I_{\text{H.H.}} - I_{\text{BT.}}}{P} , \qquad (36)$$

где $I_{\rm и.u}$ — показания измерителя при облучении ППД ионизирующим излучением, А;

 $I_{\rm Ar}$ — темновой ток, А.

11.2.4. Показатели точности измерения

11.2.4.1. Границы интервала, в которых с установленной вероятностью 0,99 находится погрешность измерения, должны соответствовать установленным в НТД из ряда; ± 2.5 ; ± 5.0 ; ± 10.0 ; ± 12.0 ; $\pm 15.0; \pm 20.0; \pm 25.0 \%.$

11.2.4.2. Значения границ интервала вычисляют по формуле

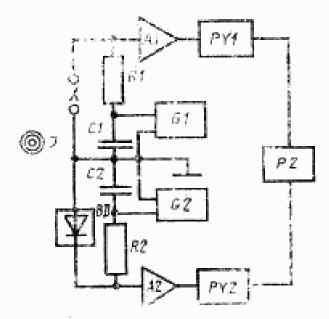
$$\delta_2 \leq \pm 0.86 \sqrt{-\delta_{\phi}^2 + \delta_i^2}$$
, (37)

где δ_Σ — граница интервала, %;

 Ф. — предел погрешности определения плотности потока или мощности дозы ионизирующего излучения, %

тредел погрешности измерения ионизационного тока,

Значения, полученные по формуле (37), необходимо округлить до ближайшего большего значения из ряда п. 11.2.4.1.


11.3. Метод 2

11.3.1. Annaparupa

11.3.1.1. Измерение аналоговой чувствительности следует проводить на установке, структурная схема которой приведена на черт. 15.

11.3.1.2. Источник импульсов ионизирующего излучения должен вырабатывать импульсы, имеющие длительность на половине высоты не более 3 мкс. Конкретное значение длительности импульса должно соответствовать установленному в НТД.

Вид ионизирующего излучения и его энергетическая характеристика должны соответствовать установленным в НТД.

I—источник импульсов новизирующего излучения; X—входяме выводы установки; BD— $\Pi\Pi \Pi$ -монитор: RI, R2—резисторы утечки: CI, C2—блокирующее кондевсаторы; AI, A2—зарядочувствительные усилители; GI, G2—источники рабочего напряжения; PYI, PYI—интегрирующие измерители: PZ—измеритель отношений сигналов

Черт. 15

Перенос или доза излучения за импульс, создаваемые в месте расположения ППД, должны удовлетворять условию

$$D \geqslant 7 - \frac{\chi E_{\text{III.BT}}}{\Sigma_{17}} \sqrt{\frac{\tau_1}{\tau}} , \qquad (38)$$

где D — перенос или доза ионизирующего излучения, част.-см-2 или P;

 χ — коэффициент преобразования, Кл·кэ ${
m B}^{-1}$; ${
m \it E}_{
m m, gr}$ — энергетический эквивалент шума ППД, кэ ${
m B}$; ${
m \it K}_{
m n-r}$

 Σ_{nr} — аналоговая чувствительность ППД, Кл-см²-част. -1 или Кл- P^{-1} :

 т. — постоянная времени формирования ЗУ при измерении аналоговой чувствительности, мкс:

постоянная времени формирования ЗУ при измерении энергетического эквивалента шума, мкс.

11.3.1.3. Тип ППД-монитора должен соответствовать установленному в НТД.

Погрешность определения аналоговой чувствительности ППДмонитора должна с установленной вероятностью 0,99 находиться в пределах, установленных в НТД из ряда: $\pm 2,5$; $\pm 5,0$; $\pm 7,5$; $\pm 10,0$; $\pm 12,0$; $\pm 15,0$; $\pm 20,0$ %.

11.3.1.4. Резисторы утечки, блокирующие конденсаторы, источники рабочего напряжения и ЗУ должны соответствовать требованиям разд. 1.

Если рабочее напряжение измеряемого ППД и ППД-монитора совпадают, допускается питать оба ППД от одного источника рабочего напряжения.

Постоянная времени формирования переходной характеристики ЗУ должна не менее чем в 3 раза превышать длительность

импульса ионизирующего излучения.

11.3.1.5. Интегрирующие измерители РУ1 и РУ2 должны преобразовывать сумму амплитуд входных импульсов с переходной характеристикой, соответствующей черт. 2, в выходной сигнал (ток, напряжение и т. п.), соответствующий требованиям к входным сигналам измерителя отношений сигналов.

Отношение коэффициентов преобразования УРТ, состоящих из зарядочувствительных усилителей и интегрирующих измерителей, должно соответствовать установленному в НТД. Погрешность определения отношения коэффициентов преобразования должна быть в пределах ±7 % с установленной вероятностью 0,99.

11.3.1.6. Измеритель отношений сигналов вводится в схему при необходимости. Погрешность выполнения операции деления должна быть в пределах ±2% с установленной вероятностью 0,99.

11.3.2. Подготовка и проведение измерений

- 11.3.2.1. Измеряемый ППД и ППД-монитор располагают таким образом, чтобы большие плоскости симметрии чувствительных областей обоих ППД находились в одной плоскости.
- 11.3.2.2. Расстояние между ППД и источником импульсов излучения устанавливают не менее

$$p_3 \ge 10 \sqrt{B^2 + r^2}$$
, (39)

где р₃ — расстояние между ППД и источником ионизирующего излучения, мм;

 В — наибольший размер излучающей поверхности источника импульсов излучения, мм;

 раднус окружности, описывающей место расположения обеих ППД, мм.

11.3.2.3. Выполияют по пп. 11.2.2.2 и 11.2.2.3.

11.3.2.4. Включают источник импульсов излучения и проводят набор информации интегрирующими измерителями от поступающих от ППД импульсов заряда, число которых соответствует установленному в НТД.

11.3.3. Обработка результатов измерений

11.3.3.1. Аналоговую чувствительность вычисляют по формуле

$$\Sigma_{AT} = \Sigma_{H} \frac{Y_{1}}{Y_{2}} \cdot Z, \tag{40}$$

где Σ_n — аналоговая чувствительность ППД-монитора, Кл-см²-част. $^{-1}$ или Кл- P^{-1} ; У₁ — показания интегрирующего измерителя УРТ измеряемого ППД;

Y₂ — показания интегрирующего измерителя УРТ ППДмонитора;

Z — отношение коэффициентов преобразования УРТ.

11.3.4. Показатели точности измерения

11.3.4.1. Границы интервала, в которых с установленной вероятностью 0,99 находится погрешность измерения, должны соответствовать значениям, установленным в НТД из ряда: ± 7.5 ; ± 10.0 ; ± 12.0 ; ± 15.0 ; ± 20.0 ; ± 25.0 %.

11.3.4.2. Значения границ интервала вычисляют по формуле

$$\delta_2 \ll \pm \sqrt{\frac{\delta_M^2 + \frac{6.7 \cdot 10^8 \chi E_{w,gr}}{D \cdot \Sigma_{aT} \cdot N} + 50}{}},$$
(41)

где от — границы интервала, %;

 б_м — погрешность определения аналоговой чувствительности ППД-монитора;

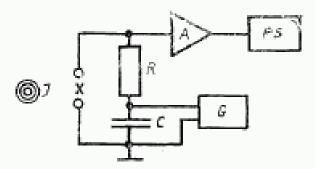
N — число импульсов ионизирующего излучения.

Значения, полученные по формуле (41), округляют до ближайшего большего значения из ряда п. 11.3.4.1.

12. МЕТОД ИЗМЕРЕНИЯ ВРЕМЕНИ И ДЛИТЕЛЬНОСТИ ФРОНТА НАРАСТАНИЯ СИГНАЛА

12.1. Принцип измерения

12.1.1. Время и длительность фронта нарастания сигнала определяют прямым измерением параметров фронта нарастания заряда (напряжения) импульса ППД, находящегося в поле коротких импульсов нонизирующего излучения, создающих на сигнальных выводах амплитуду напряжения не менее 0,2 В.


В НТД допускается устанавливать методы, обладающие повышенной чувствительностью, основанные на косвенных измерениях или расчетах времени нарастания сигнала.

12.2. Аппаратура

12.2.1. Измерение времени и длительности фронта нарастания сигнала следует проводить на установке, структурная схема которой приведена на черт. 16.

12.2.2. Резистор утечки, блокирующий конденсатор и источник рабочего напряжения должны соответствовать требованиям разд. 1 настоящего стандарта.

12.2.3. Усилитель включают в схему для согласования входного импеданса измерителя временных интервалов и его чувствительности с измеряемым сигналом.

I—источени можнанрующего вълучения; X—входиме выводы установия; R—реанстор утечки; C—блокирующей конденсатор; A—усилитель; G—источник рабочего напряжения; PS—измеритель времеяных интервалов

Черт. 16

Усилитель должен удовлетворять следующим требованиям: входная емкость усилителя $C_v < 5C_{xx}$;

входное сопротивление
$$\frac{R \cdot R_y \cdot C_{\pm \tau}}{R + R_y} \geqslant 20t_y$$
, (42)

где C_y — входная емкость усилителя, п Φ ;

 C_{AT} — емкость ППД, пФ;

R — сопротивление резистора R, МОм;

R_y — входное сопротивление усилителя, МОм;

 $t_{\rm H}$ — время нарастания сигнала ППД, мкс.

Время нарастания сигнала в усилителе должно быть не более 30 % значения времени нарастания сигнала ППД, установленного в НТД.

Постоянная времени спада переходной характеристики усилителя должна не менее чем в 20 раз превышать значение времени нарастания сигнала, установленное в НТД.

Среднее квадратическое значение уровня шума усилителя на входе измерителя временных интервалов должно быть не более 1 % амплитуды сигнала.

12.2.4. Длительность импульса источника ионизирующего излучения на половине высоты должна быть не более 30 1% значения времени нарастания сигнала ППД, установленного в НТД.

Вид ионизирующего излучения и тип источника должны соответствовать установленным в НТД.

12.2.5. Измеритель временных интервалов должен обеспечивать фиксацию уровней отсчета 0,1, 0,5 и 0,9 с погрешностью впределах ±3 % амплитуды импульса.

Погрешность измерителя должна быть в пределах ±10 % нормы времени нарастания сигнала, установленной в НТД.

Рекомендуется в качестве измерителей временных интервалов использовать осциллоскопы с запоминанием или фотографированием информации. Если измеритель временных интервалов удовлетворяет всем требованиям к усилителю, то допускается исключить усилитель из установки.

12.3. Подготовка и проведение измерений

12.3.1. ППД подключают к входным выводам установки.

12.3.2. На входных выводах устанавливают рабочее напряжение.

12.3.3. Включают импульсный источник ионизирующего излу-

12.3.4. Проводят отсчет интервала времени между уровнями 0,1 и 0,9 амплитуды сигнала (в случае измерения времени нарастания сигнала) или между уровнями 0,1 и 0,5 амплитуды сигнала (в случае измерения длительности фронта нарастания сигнала).

12.4. Обработка результатов измерения

12.4.1. Время нарастания сигнала t_n , с, вычисляют по формуле

$$t_{\nu} = t_{\mu\nu}, \tag{43}$$

где $t_{\rm sst}$ — длительность интервала времени между уровнями отсчета 0,1 и 0,9 амплитуды сигнала, с.

Если длительность измеренного интервала времени

$$t_{\text{iin}} \leq 3\sqrt{(t_{\text{H,V}}^2 + 1,17 t_{\text{H}}^2)},$$
 (44)

где $t_{\rm s.y}$ — время нарастания сигнала усилителя, с;

 $t_{\rm w}$ — длительность импульса на половине высоты, с, то время нарастания сигнала вычисляют по формуле

$$t_{\rm sp} = \sqrt{-t_{\rm gs}^2 - (t_{\rm g,y}^2 + 1,17t_{\rm g}^2)}. \tag{45}$$

12.4.2. Длительность фронта нарастания сигнала вычисляют по формуле

$$\tau_n = 1,15\tau_{nn} \tag{46}$$

где ти -- длительность фронта нарастания сигнала, с;

тин — длительность фронта измеренного импульса по уровням 0,1—0,5 с.

Если длительность измеренного интервала времени

$$\tau_{ns} \leqslant 3 \sqrt{\tau_{n,y}^2 + 0.45 t_n^2},$$
(47)

где $\tau_{*,y}$ — длительность переходной характеристики усилителя по уровням 0,1-0,5 с, расчет проводят по формуле

$$\tau_{\rm BR} = 1.15 \sqrt{\tau_{\rm BR}^2 - (\tau_{\rm B,v}^2 + 0.45 t_{\rm B}^2)}. \tag{48}$$

12.5. Показатели точности измерений

12.5.1. Погрешность измерения времени и длительности фронта нарастания сигнала находится в интервале ±15 % с установленной вероятностью 0,99.

13. ТРЕБОВАНИЯ БЕЗОПАСНОСТИ

13.1. Требования электробезопасности

13.1.1. Средства измерений электрических и радиометрических параметров в части электробезопасности должны соответствовать требованиям ГОСТ 12.1.030—81 и ГОСТ 12.2.007.0—75.

13.1.2. Управление измерительным оборудованием осуществляет персонал, выполняющий технологические операции согласно

принятому технологическому режиму.

К управлению измерительным оборудованием допускают инженерно-технических работников и рабочих, имеющих первую квали-

фикационную группу по технике безопасности.

13.1.3. Персонал приступает к измерениям только после предварительного осмотра оборудования и проверки исправности действия защитных устройств рабочей камеры (контактодержателя). Исправность их действия определяют не менее чем по двум признакам, например, по показаниям измерительных приборов и сигнальным лампам.

Все операции, связанные с установлением (извлечением) измеряемого ППД в рабочую камеру (при напряжении смещения свыше 36 В), выполняют только после снятия напряжения с входа установки.

13.1.4. При работе необходимо соблюдать требования безопасности:

не прикасаться к приборам, вмонтированным под защитные стекла и сетки;

не снимать ограждающие приспособления;

переносные приборы размещать только на рабочем столе, полках или выдвижных столиках оборудования;

амплитудные анализаторы, пересчетные приборы, осциллографы и другие аналогичные приборы размещать на специальных тележках, столах, стеллажах или в нишах оборудования;

до включения в электрическую сеть заземлять (зануливать) металлические корпуса переносных измерительных приборов;

при отключении приборов провод защитного заземления отключают в последнюю очередь.

13.2. Требования безопасности при измерении

радиометрических параметров

13.2.1. При измерении радиометрических параметров ППД необходимо соблюдать меры безопасности в соответствии с требованиями «Норм радиационной безопасности, НРБ-76», утвержденных 07.06.76 г., и «Основных санитарных правил работы с радиоактивными веществами и другими источниками ионизирующих излучений. ОСП-72/80», утвержденных 10.04.72 г.

> ПРИЛОЖЕНИЕ 1 Справочное

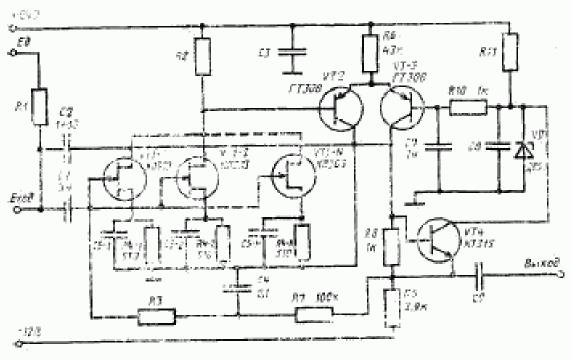
МЕТОД ОЦЕНКИ ВРЕМЕНИ УСТАНОВЛЕНИЯ РАБОЧЕГО PEXKHMA

1. Время установления рабочего режима ППД определяют как полное время, за которое происходит установление темнового тока в ППД, если рабочее напряжение подзется на ППД идеальным скачком.

2. Оценка времени установления рабочего режима проводится по формуле

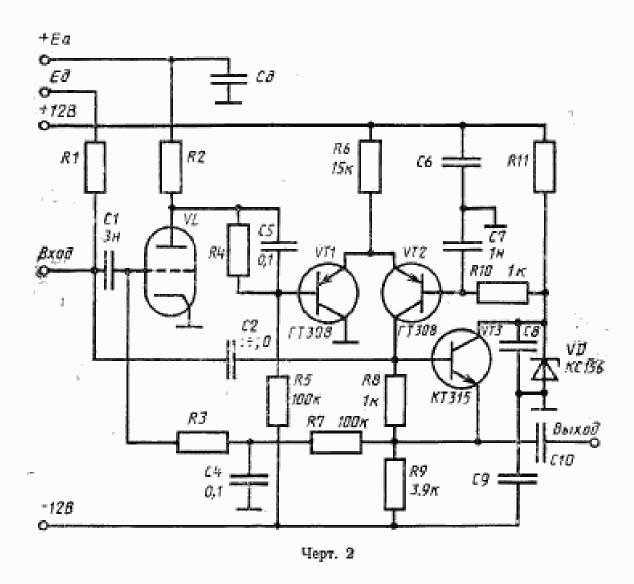
$$t_y \! < \! 3 \, \sqrt{\frac{W^4}{\mu^2 U_{RT}^2} + \! \epsilon_{_{\mathcal{K}}}^2 \cdot \! \frac{L^3}{W^3}} \ ,$$

где f_v — время установления рабочего режима, с;


W — ширина чувствительной области ППД, мм; μ — подвижность дырок, мм²-В $^{-1}$ -с $^{-1}$; U_{AT} — рабочее напряжение, В;

тж — время жизии неосновных носителей заряда в материале ППД, с; — диффузионная длина неосновных носителей заряда в материале ППД, мм.

ТИПОВЫЕ СХЕМЫ ЗАРЯДОЧУВСТВИТЕЛЬНЫХ ВХОДНЫХ КАСКАДОВ И ИХ ОСНОВНЫЕ ХАРАКТЕРИСТИКИ


Схемы зарядочувствительных входных каскадов приведены на черт. 1, 2.

Транзисторный зарядочувствительный входной каскад

Черт. 1

Лампово-транзисторный зарядочувствительный входной каскад

Схему, приведенную на черт. 1, применяют в установках, используемых для измерения параметров ППД на рабочее напряжение до 50 В, на черт. 2 для ППД на напряжение свыше 50 В.

Номинальные значения параметров, не имеющих принципиального значения, например емеости блокирующих конденсаторов, на схемах не показаны.

В схемы допускается вводять дополнятельные элементы, необходимые в конкретных вариантах исполнения, например, для повышения динамической устойчивости схем.

Основные характеристики зарядочувствительных каскадов приведены в таблице.

Экергетический эквивалент шумов ЗУ по кремнию определяют по формуле

$$E_{\text{m.y}} = [A_1(C_{AY} + C_0)^2 \tau^{-1} + A_2 \tau]^{1/2}$$
,

где $E_{\mathrm{m,y}}$ — энергетический эквивалент шумов ЗУ, кэВ;

 A_1 — коэффициент из таблицы, кэ B^2 мко пф $^{-2}$;

 C_{AT} — емкость ППД, пФ;

CTp. 40 FOCT 26222-86

 C_0

начальная входная емкость, пФ (см. таблицу);
 постоянная времени формирования переходной характеристики ЗУ,

 A_2 — коэффициент из таблицы, кэ B^2 -мкс $^{-1}$. Формула не учитывает тепловой шум резистора утечки ППД.

							_
Тип лампы (транзистора)	Напряжение внода (стока), В	Ток авода (стока), мА	R2, кОм	R4. кОм. (черт. 2)	R3, МОн	+B, B (wepr. 2)	
6С15П 6Ж1П (триодное включе- вие) 6Н23П (один триод) 6Н23П (два триода) КП303Г×1 КП303Г×2 КП303Г×4 КП303Г×8 КП303Г×8	70 60 60 10 10 10 10	12 5 5 10 5,0 2×2,5 4×2,5 8×2,5 16×2,5	1,0 3,0 2,0 1,0 2,2 2,2 1,3 0,62 0,33	620 330 240 240 — —	1 3 3 1 10—1000 То же 10—100 То же	85 70 70 70	

Наибольшее напряжение на ППД, В	Наибольшая емкость ППЛ, пФ	Постоянкая пременя фор- мирования переходной характерис- тики, мис	<i>С</i> ₆ , пФ	А ₁ , къВ¹∙мкс• пФ ^{—2}	А _в . кэВэ∙мкс +-1
3000 То же 50 То же	250 C ₂ 200 C ₂ To me 250 C ₃ To me	0,05—10 0,15—10 То же 0,1—10 0,05—10 То же	$30+C_2$ $20+C_2$ To же $30+C_2$ $10+C_2$ $15+C_2$ $30+C_2$ $60+C_2$ $110+C_2$	0,004 0,030 0,020 0,010 0,015 0,010 0,006 0,003 0,002	20 4 3 5 1 2 4 8 16

ХАРАКТЕРИСТИКА ОСНОВНЫХ РАДИОНУКЛИДНЫХ ИСТОЧНИКОВ ИЗЛУЧЕНИЙ

Навыенованяе изотопа	Вил излучения	Энергия, кэВ (абсо- дютная витенсив- пость, %)	Период полу- распада, лет	
Паутоний-239*	Альфа	5155,4 (73,3)	24113	
Америций-241*	Альфа	5485,7 (85,2)	432,1	
The product of the same of the	Гамма	59,5 (35,8) 26,4 (2,4)		
Плутоний-238*	Альфа	5499.2 (71.5)	87,74	
Цезий-137	Гамма	661,7 (85,3) 32,8 (7)	30,18	
	Коиверсионные электроны	624,2 (7,8) 655,7 (1,2)		
Кобальт-57	Гамма	122,1 (85,4) 136,5 (10,7)	0,74	
Стронций-90+иттрий-90**	Бета	546 (100) 2274 (100)	28,7	
Қобальт-60	Гамма	1173,2 (100) 1332,5 (100)	5,27	
Плутоний-альфа-берил- лисвый**	Нейтроны	10000	24113	

Допускается применять источники, содержащие смесь изотопов.
 Непрерывный спектр. Указанные значения энсогий — максимальные.

ПРИЛОЖЕНИЕ 4 Обявательное

МЕТОДЫ ОПРЕДЕЛЕНИЯ ШИРИНЫ КАНАЛА (КАЛИБРОВКИ)

В НТД указывают один из нижеприведенных методов калибровки:

метод 1 рекомендуется в случаях, когда в составе установок имеется генератор импульсов точной амплитуды и известен коэффициент преобразования: метод 2 рекомендуется, когда в рабочей части регистрируемого спектра новизирующего излучения содержатся две или более четко различимые линии

моновнергетических излучений.

1. METOR 1

Принцип калибровки

1.1.1. Калибровку проводят путем подачи на вход установки импульсов заряда, имитирующих энергии рабочего диапазона, преобразованные ППД в электрический сигиал.

1.2. Аппаратура

1,2.1. Дозирование заряда осуществляют генератором импульсов напряжения и дозирующим конденсатором (пп. 4.1.3 и 4.1.4 настоящего стандарта).

1.2.2. Погрешность определения амплитуды импульсов генератора должна быть в пределях ±3 % с установленной вероятностью 0,99.

1.3. Проведение калибровки

1.3.1. На вход установки подвот заряд, имитирующий энергию E_{10} . Напряжение генератора при этом устанавливают равным

$$U_r = \chi \frac{E_{10}}{C_v} , \qquad (1)$$

ют номер канала n_1 , соответствующий положению максимума зарегистрированного распределения.

1.3.3. Действия по ин. 1.3.1 - 1.3.2 проводят для энергии E_{20} и определяют номер канала пр соответствующий положению максимума зарегистрированного распределения. Энергия E_{10} и E_{20} должны удовлетворять неравенству

$$|E_{10}-E_{20}| > 3E_{m.c.}$$
, (2)

где E_{10}, E_{20} — имитируемые энергии, кэВ; $E_{\mathrm{m,c}}$ — собственный шум УРТ.

1.4. Определение щирины канада 1.4.1. Ширину канала вычисляют по формуле

$$H = \frac{E_{10} - E_{20}}{n_1 - n_2} \,, \tag{3}$$

где п₁, п₂ — соответствующие номера каналов. 1.5. Показатели то≒ности

1.6;1; Погрешность определения ширины канала находится в пределах ±4 % с установленной вероятностью 0,99.

2. METOA 2

2.1. Принцип и условия калибровки

 Калибровку проводят путем регистрации спектра ноинзирующего излучения, имеющего в рабочей области не менее двух линий с известными энергиями, четко разрешимых ППД.

2.1,2. Калибровку проводят для каждого экземпляра ППД в условиях из-

мерения энергетического разрешения.

2.2. Аппаратура

2.2.1. Аппаратура должна соответствовать требованиям разд. 4 настоящего.

стандарта.

2.2.2. Расстояние между линиями слектра источника ионизирующего излучения должно быть не менее чем в два раза больше нормы на энергетическое разрешение, установленной и НТД. Интенсивности линий должны отличаться не более чем в 10 раз.

2.3. Проведение калибровки

2.3.1. На амплитудном авализаторе проводят набор спектра импульсов, выз-

ванных регистрацией ППД коннанрующего излучения.

2.3.2. Определяют номера намалов n_1 и n_2 соответствующих энергиям излучения E_{10} и E_{20} . Расстояние между линиями спектра должно быть не менее 80 каналов.

2,4. Обработка результатов

2.4.1. Ширину канала вычисляют по формуле (3).

25. Показателя точности

2.5.1. Погрешность определения ширины канала находится в пределах ±5% с установленной вероятностью 0.99.

Редактор М. В. Глушкова Технический редактор О. Н. Никитина Корректор В. С. Черная

Сдаво в наб. 21.04.86 Подп. к веч. 79.07.86 2.75 усл. веч. л. 2,88 усл. кр.-отт. 2,78 уч.-изд. л. Тираж 10000 Цена 15 коп.

> Ордена «Знак Почета» Издательство стандартов, 128840, Москва, ГСЛ, Новопресненский пер., 3, Калужская типография стандартов, ул. Московская, 266, Зак. 1167

