АММИАК ВОДНЫЙ ОСОБОЙ ЧИСТОТЫ

ТЕХНИЧЕСКИЕ УСЛОВИЯ

Издание официальное

E3 1 - 2003

ИПК ИЗДАТЕЛЬСТВО СТАНДАРТОВ Москва

межгосударственный стандарт

АММИАК ВОДНЫЙ ОСОБОЙ ЧИСТОТЫ

Технические условия

ΓΟCT 24147-80

Super pure ammonia aqueous solution. Specifications

MKC 71.040.30 OKΠ 26 1141 0004 10

Дата введения 01.01.81

Настоящий стандарт распространяется на водный раствор аммиака особой чистоты, представляющий собой бесцветную прозрачную жидкость с характерным острым запахом, не содержащую механических примесей и получаемый с применением сырья, не содержащего примесей мышьяка и сурьмы.

Формула: NH₃.

Относительная молекулярная масса (по международным атомным массам 1987 г.) — 17,03. (Измененная редакция, Изм. № 3).

1. ТЕХНИЧЕСКИЕ ТРЕБОВАНИЯ

- Водный аммиак особой чистоты должен быть изготовлен в соответствии с требованиями настоящего стандарта по технологическому регламенту, утвержденному в установленном порядке.
- По физико-химическим показателям водный аммиак особой чистоты должен соответствовать требованиям и нормам, указанным в табл. 1.

Таблица І

	Норма			
Наименование показателя	ос. ч. 235	ос. ч. 16—4		
	OKΠ 26 1141 0034 04	OKII 26.1141 0024 06		
1. Массовая доля аммиака (NH ₃), %, не менее	25	25 ·		
Массовая доля остатка после прокаливания, %, не более	1.10-3	2-10-3		
3. Массовая доля алюминия (AI), %, не более	1.10-6	5-10—6		
4. Массовая доля бора (В), %, не более	1.10~6	1-10—5		
5. Массовая доля висмута (Ві), %, не более	1 10-6	1-10—6		
6. Массовая доля галлия (Ga), %, не более	1:10-6	Не нормируется		
7. Массовая доля железа (Fe), %, не более	1.10-6	5-10—6		
8. Массовая доля золота (Аи), %, не более	1.10-6	Не нормируется		

Издание официальное

Перепечатка воспрешена

*

© Издательство стандартов, 1980 © ИПК Издательство стандартов, 2003

		прополение таки. 1
	Ho	bira .
Наименование показателя	oc. 4. 23-5	ос. ч. 16—4
	OKII 26 1141 0034 04.	ОКП 26 1141 0024 06
9. Массовая доля индия (In), %, не более	1.10-6	Не нормируется
10. Массовая доля кадмия (Cd), %, не более	5-10-7	То же
11. Массовая доля калия (К), %, не более	1-10-6	*
12. Массовая доля кальция (Са), %, не более	$2 \cdot 10^{-6}$	5-10-5
13. Массовая доля карбонатов (СО3), %, не более	1-10-3	1.10-3
14. Массовая доля кобальта (Со), %, не более	1-10-7	1-106
15. Массовая доля магняя (Мg), %, не более	5-10-7	5.10-6
16. Массовая доля марганца (Мп), %, не более	1-10-7	1.10—6
17. Массовая доля меди (Си), %, не более	1-10-7	1:106
18. (Исключен, Изм. № 3).		
19. Массовая доля натрия (Na), %, не более	1-10-6	Не нормируется
20. Массовая доля никеля (Ni), %, не более	1-10-7	1.10—6
21. Массовая доля олова (Sn), %, не более	5-10-7	5-10—6
22. Массовая доля свинца (Рb), %, не более	I-10 ⁻⁷	5-106
23. Массовая доля серебра (Ад), %, не более	3-10 ⁻⁸	1-10-7
24. Массовая доля сульфатов (SO ₄), %, не более	3-10-5	2-10-4
25. (Исключен, Изм. № 3).		
26. Массовая доля титана (Ті), %, не более	5-10-7	1.10—6
27. Массовая доля хлоридов (СІ), %, не более	2,5·10-5	5-105
28. Массовая доля хрома (Сг), %, не более	3-10-7	Не нормируется
29. Массовая доля фосфора (Р), %, не более	1.10-5	1.10—5
30. Массовая доля цинка (Zn), %, не более	1-10-6	1.10-5
31. Массовая доля веществ, восстанавливающих (КМпО ₄), %, не более	8-10-4	8-10-4
32. Массовая доля бария (Ва), %, не более	1-10-5	Не нормируется
33. Массовая доля кремния (Si), %, не более	5-10-6	То же
34. Массовая доля лития (Li), %, не более	1-10-6	ż
35. Массовая доля пиридина (С ₅ Н ₅ N), %, не более	2-10-5	>>
36. Массовая доля ртути (Hg), %, не более	5·10 ⁻⁶	20
37. Массовая доля сульфидной серы (S), %, не более	5-10	>
38. Массовая доля стронция (Sr), %, не более	5-10-6	zi.
The second second of the second second second second		

 Π р и м е ч а н и е. При подсчете числа и суммы примесей для установления марок не учитываются показатели 2, 13, 24, 27, 31—38 — для марки ос. ч. 23—5 и 2, 13, 24, 27, 31 — для марки ос. ч. 16—4.

(Измененная редакция, Изм. № 1, 2, 3).

2. ТРЕБОВАНИЯ БЕЗОПАСНОСТИ

- 2.1. Аммиак относится к веществам 4-го класса опасности (ГОСТ 12.1.005). Предельно допустимая концентрация (ПДК) аммиака, выделяющегося из его водного раствора в воздух рабочей зоны производственных помещений, составляет 20 мг/м³. Определение аммиака в воздухе проводят методом, основанным на образовании окрашенного в желто-бурый цвет йодида димеркураммония при взаимодействии аммиака с реактивом Несслера. Чувствительность метода 1 мкг в анализируемом объеме раствора.
- 2.2. Аммиак вызывает катары верхних дыхательных путей, ангины, тонзиллиты. Тяжелое отравление аммиаком приводит к острой эмфиземе, увеличению печени; возможен химический ожог глаз и верхних дыхательных путей. При хроническом отравлении возможны головные боли, повышенная раздражительность, снижение трудоспособности.

Продукт сильно раздражает кожу вплоть до ее ожога с образованием пузырей. Попадание аммиака в глаза может привести к полной слепоте.

- При работе с продуктом следует применять индивидуальные средства защиты в соответствии с типовыми отраслевыми нормами. Не допускается попадание препарата внутрь организма, на кожу и в глаза.
 - 2.1-2.3. (Измененная редакция, Изм. № 1).
- 2.4. Помещения, в которых проводятся работы с продуктом, должны быть оборудованы непрерывно действующей приточно-вытяжной вентиляцией. В местах повышенного выделения аммиака следует устроить местные отсосы. Анализ продукта в лабораториях следует проводить в вытяжном шкафу.

(Измененная редакция, Изм. № 1, 2).

- 2.5. Технологическое оборудование должно быть надежно загерметизировано.
- 2.6. Водный аммиак является трудногорючей жидкостью, не способной к самостоятельному горению. В закрытых сосудах над крепкими растворами аммиака могут создаваться взрывоопасные концентрации. Нижний температурный предел воспламенения (−2±2,2) °C. Температура самовоспламенения (750±3) °C.

Для тушения следует применять тонкораспыленную воду.

2.5, 2.6. (Измененная редакция, Изм. № 1).

3. ПРАВИЛА ПРИЕМКИ

- Правила приемки по ГОСТ 3885.
- 3.2. Массовые доли примесей, указанных в пп. 3—12, 14—17, 19—24, 26—30, 32—38 табл. 1, изготовитель определяет периодически один раз в месяц.

(Измененная редакция, Изм. № 3).

4. МЕТОДЫ АНАЛИЗА

4.1а, Общие указания по проведению анализа — по ГОСТ 27025.

Для измерения времени применяют секундомер СОПпр 35-1-000.

При взвешивании применяют лабораторные весы общего назначения типа ВЛР-200г и ВЛКТ-500г-М или ВЛЭ-200г.

Допускается применение других средств измерения с метрологическими характеристиками и оборудования с техническими характеристиками не хуже, а также реактивов по качеству не ниже указанных в настоящем стандарте.

(Измененная редакция, Изм. № 2, 3).

4.16. Внутренний оперативный контроль точности результатов анализа по пп. 4.5—4.8, 4.11— 4.14, 4.17, 4.18 проводят в соответствии с приложением А.

Определение коэффициентов и проверка стабильности градуировочного графика в пп. 4.11.2.1, 4.12.2.1, 4.14.2.1, 4.16.2.1, 4.17.2.1, 4.18.2.1 — в соответствии с приложением Б.

(Введен дополнительно, Изм. № 3).

4.1. Отбор проб

4.1.1. Пробы отбирают по ГОСТ 3885.

Для определения массовых долей аммиака и углекислых солей пробы отбирают сразу же после вскрытия тары.

C. 4 FOCT 24147-80

Масса средней пробы должна быть не менее 2,5 кг для продукта ос.ч. 23-5 и 1,2 кг — ос.ч. 16-4.

(Измененная редакция, Изм. № 1, 3).

- Примеси анионов определяют в помещении, исключающем возможность попадания кислот и легколетучих солей, содержащих соответствующие анионы.
 - Определение массовой доли аммиака проводят по ГОСТ 3760.

4.4. Определение массовой доли остатка после прокаливания

4.4.1. Проведение анализа

110 см³ (100 г) продукта марки ос. ч. 23—5 или 55 см³ (50 г) продукта марки ос. ч. 16—4, взятого по объему цилиндром с пришлифованной пробкой (ГОСТ 1770) с погрешностью не более 1 см³, выпаривают в несколько приемов на водяной бане досуха в чашке из платины (ГОСТ 6563) или кварцевой чаше (ГОСТ 19908) вместимостью 100 см³, предварительно прокаленной при 500 °С—600 °С до постоянной массы и взвешенной. Результат взвешивания в граммах записывают с точностью до четвертого десятичного знака.

Чашку с сухим остатком помещают в муфельную печь и прокаливают при 500 °C-600 °C в течение 5 мин, охлаждают и взвешивают.

(Измененная редакция, Изм. № 1, 2, 3).

4.4.2. Обработка результатов

Массовую долю остатка после прокаливания (X_0) в процентах вычисляют по формуле

$$X_0 = \frac{m_+ 100}{m}$$
,

где m_1 — масса прокаленного остатка, г;

т — масса навески препарата, г.

Допускаемая относительная суммарная погрешность результата анализа ± 45 % при доверительной вероятности P=0,95.

Допускается не вычислять массовую долю остатка после прокаливания. В этом случае продукт считают соответствующим требованиям настоящего стандарта, если масса прокаленного остатка не превышает 1,0 мг.

(Введен дополнительно, Изм. № 2).

4.5. Определение массовых долей алюминия, бария, бора, висмута, галлия, железа, золота, индия, кадмия, кальция, кобальта, магния, марганца, меди, никеля, олова, сурьмы, свинца, серебра, стронция, титана, хрома, цинка методом атомно-эмиссионной спектроскопии

(Измененная редакция, Изм. № 3).

4.5.1. Аппаратура, реактивы и растворы

Спектрограф кварцевый ИСП-30 с трехлинзовой системой освещения и трехступенчатым ослабителем или спектрограф со скрещенной дисперсией СТЭ-1 и трехступенчатым ослабителем.

Выпрямитель типа ВАЗ 230-70 или ВАЗП-380/260-40/80.

Генератор дуги переменного тока ДГ-2, ИВС-20 или ИВС-28.

Микрофотометр МФ-2, МФ-4, ИФО-451 или ИФО-460.

Спектропроектор ПС-18, СПП-2 или ДСП-2.

Угли графитированные ос.ч. 7—3 (электроды); в нижнем электроде высверливают канал (кратер) диаметром 4,5 мм, глубиной 2 мм; верхний заточен на слегка усеченный конус. Перед съемкой электроды обжигают в дуге постоянного тока силой 10—12 А в течение 30 с со сменой полярности через 10 с.

Графит порошковый ос.ч. 8—4 по ГОСТ 23463.

Весы торсионные марки ВТ с ценой деления 1 мг и предельной нагрузкой 500 мг.

Фотопластинки спектральные типа II, чувствительностью 15 отн. единиц размером 9×18 см и 13×18 см или типа I чувствительностью 4—6 отн. единиц.

Проявитель метолгидрохиноновый, готовят следующим образом: раствор A=2 г метола, 10 г гидрохинона и 104 г 7-водного сульфита натрия (или 52 г сернистокислого натрия) растворяют в воде, доводят объем раствора водой до 1 дм³, перемешивают и, если раствор мутный, его фильтруют; раствор B=16 г углекислого натрия (или 40 г 10-водного углекислого натрия) и 2 г бромистого калия растворяют в воде, доводят объем раствора водой до 1 дм³, перемешивают и, если раствор мутный, его фильтруют. Затем растворы A и B смешивают в равных объемах.

Фиксаж быстродействующий, готовят следующим образом: 500 г 5-водного серноватистокис-

лого натрия и 100 г хлористого аммония растворяют в воде, доводят объем раствора водой до 2 дм³, перемешивают и, если раствор мутный, его фильтруют.

Метол (4-метиламинофенол сульфат) по ГОСТ 25664.

Гидрохинон (парадиоксибензол) по ГОСТ 19627.

Натрий сульфит 7-водный или натрий сернистокислый по ГОСТ 195.

Натрий углекислый по ГОСТ 83 или натрий углекислый 10-водный по ГОСТ 84.

Калий бромистый по ГОСТ 4160.

Аммоний хлористый по ГОСТ 3773.

Натрий серноватистокислый (натрия тиосульфат) 5-водный по ГОСТ 27068.

Алюминий оксид для спектрального анализа, х.ч.

Барий оксид, oc.ч. 10—1.

Борная кислота, ос.ч. 13-4.

Висмут (III) оксид, ос.ч. 13-3.

Галлий (III) оксид, ос.ч. 15-2.

Железо (III) оксид, ос.ч. 2-4.

Индий (III) оксид, ос.ч. 12-2.

Кадмий оксид, ос.ч. 11—3.

Кальций оксил, ос.ч. 6-2.

Кобальт (II, III) оксид для спектрального анализа.

Магний оксид, ос.ч. 11-2.

Марганца (IV) окись по ГОСТ 4470.

Медь (II) оксид порошок, ос.ч. 9-2.

Никель оксид черный, ос.ч. 10-2.

Олово (II) оксид, ч.

Свинец (П) оксид.

Серебро азотнокислое по ГОСТ 1277, х.ч.

Стронций карбонат для спектрального анализа.

Титан (IV) оксид, ос.ч. 7-5.

Хром (III) оксид.

Цинка окись по ГОСТ 10262.

Золотохлористоводородная кислота 4-водная, ч.

Раствор, содержащий Au, готовят следующим образом: 0,209 г золотохлористоводородной кислоты (с массовой долей Au 47,85 %) помещают в мерную колбу, растворяют в воде, перемешивают и доводят объем раствора водой до метки, 1 см³ раствора содержит 1 мг Au.

Электроплитка графитовая с регулятором напряжения.

Ступки из органического стекла.

Чаша-100 по ГОСТ 19908 или чашка из фторопласта-4 вместимостью 100 см³.

Колба 2-100-2 по ГОСТ 1770.

Пипетки 1(2)—1(2)—2—1 и 1(2)—1(2)—2—5 по ГОСТ 29227.

Цилиндр 1(3)—50(100)—2 по ГОСТ 1770.

Вода дистиллированная по ГОСТ 6709.

Натрий хлорид для спектрального анализа, х.ч.

Натрий фторид, ос.ч. 9—3.

Спирт этиловый ректификованный технический по ГОСТ 18300, высший сорт.

(Измененная редакция, Изм. № 1, 2, 3).

4.5.2. Подготовка к анализу

4.5.2.1. Приготовление образцов сравнения

Основной образец сравнения с массовой долей по 1 % каждой из определяемых примесей (в пересчете на металл) готовят тщательным растиранием в течение 2 ч в ступке из органического стекла 1,3380 г порошкового графита, 0,0380 г оксида алюминия, 0,0220 г оксида бария, 0,0930 г борной кислоты, 0,0220 г оксида висмута (III), 0,0270 г оксида галлия (III), 0,0280 г оксида железа (III), 0,0220 г оксида индия (III), 0,0220 г оксида кадмия, 0,0280 г оксида кальция, 0,0280 г оксида кобальта (II, III), 0,0340 г оксида магния, 0,0320 г оксида марганца (IV), 0,0250 г оксида меди (II), 0,0340 г оксида никеля, 0,0260 г оксида олова (II), 0,0200 г оксида свинца (II), 0,0310 г азотнокислого серебра, 0,0170 г карбоната стронция, 0,0340 г оксида титана (IV), 0,0300 г оксида хрома (III), 0,0250 г окиси цинка.

Образцы сравнения с массовой долей 0,1; 0,01; 0,001 и 0,0001 % каждой из определяемых

C. 6 FOCT 24147-80

примесей готовят последовательным тщательным растиранием одной массовой части предыдущего образца сравнения с девятью массовыми частями порошкового графита.

Промежуточные образцы сравнения с массовой долей 3,33·10⁻¹ % каждой примеси готовят тщательным растиранием одной массовой части предыдущего образца сравнения с двумя частями порошкового графита. К каждому образцу сравнения прибавляют 4 % хлорида натрия (или фторида натрия) и тщательно растирают в ступках из органического стекла. При растирании образцов сравнения допускается добавлять этиловый спирт из расчета 2 см³ на 1 г смеси. Концентрации образцов сравнения — от 1·10⁻¹ до 3·10⁻⁵ %.

В образцы сравнения с массовой долей по 0,01 % каждой из определяемых примесей вводят 0,2 см³ раствора, содержащего золото в пересчете на 2 г навески образца.

(Измененная редакция, Изм. № 1, 2, 3).

4.5.2.2. Подготовка анализируемой пробы

В три кварцевые чаши или фторогластовые чашки помещают цилиндром 55 см³ (50 г) продукта, взятого по объему с погрешностью не более 1 см³.

В каждую чашку прибавляют по 0,0250 г порошкового графита, смесь выпаривают досуха на водяной бане или на графитовой электроплитке в боксе из органического стекла. Сухие остатки количественно переносят на кальку. Затем смешивают сухие остатки с 0,0020 г хлорида натрия или с 0,0010 г фторида натрия.

(Измененная редакция, Изм. № 1, 2).

4.5.3. Проведение анализа

В каналы электродов (анодов) на дно вносят 0,0250 г полученных концентратов анализируемой пробы и образцов сравнения и снимают спектрограмму в условиях, указанных в табл. 1а.

Таблица 1а

Наименование показателя	Условия съемки			
	для дуги постоянного тока	для дуги переменного тока		
Сила тока, А Экспозиция, с Ширина щели спектрографа, мм	12 30 0,015	15 45 0,015		

Спектры анализируемых проб и образцов сравнения снимают на одной фотопластинке не менее трех раз.

Фотопластинку со снятыми спектрами проявляют, промывают водой, фиксируют, снова тщательно промывают в проточной воде и высушивают на воздухе при помощи вентилятора.

Сухую фотопластинку фотометрируют на микрофотометре, пользуясь логарифмической шкалой, и измеряют почернение аналитических линий определяемых элементов (S_{np}) по подходящей ступени ослабителя и соседнего фона (S_n).

Аналитические линии, нм

кальций	317,93; 317,9	цинк	328,23
хром	357,87; 283,56	марганец	280,11
серебро	328,01	золото	267,50
медь	324,75; 327,4	титан	308,8
бор	249,68-249,77	галлий	294,36
никель	305,08	индий	325,61
железо	302,06	свинец	283,31
стронций	460,73; 430,5; 407,7	кобальт	345,35; 252,1
алюминий	308,22	висмут	306,77
магний	280,27	барий	493,41; 455,4
олово	283,99; 317,50	кадмий	228,80; 325,2

Находят среднеарифметическое значение разности почернений $\Delta S = S_{\rm np} - S_{\rm p}$ для каждой примеси в концентратах анализируемых проб и образцов сравнения. Строят градуировочный график

для каждого определяемого элемента по средним значениям ΔS ; на оси абсцисс откладывают логарифмы массовой доли примеси в образце сравнения, на оси ординат — разность почернений ΔS .

По градуировочным графикам находят массовую долю примеси в концентрате.

4.5.4. Обработка результатов

Массовую долю каждой примеси в продукте (Х) в процентах вычисляют по формуле

$$X = \frac{m_1 m_2}{m},$$

где m_1 — масса навески порошкового графита, г;

т. — массовая доля определяемой примеси в концентрате, %;

т — масса навески продукта, г.

За результат анализа принимают среднеарифметическое результатов трех параллельных определений, относительное расхождение между наиболее отличающимися значениями которых не превышает допускаемое расхождение, равное 100 %.

Допускаемая относительная суммарная погрешность результата анализа $\pm 50 \%$ при доверительной вероятности P=0,95.

При разногласиях в оценке массовой доли цинка определение проводят люминесцентным методом (п. 4.7).

4.5.3, 4.5.4. (Измененная редакция, Изм. № 1, 2, 3).

4.6. Определение массовых долей алюминия, висмута, железа, кадмия, кальция, кобальта, магния, марганца, меди, никеля, олова, свинца, серебра, хрома, цинка методом атомно-абсорбционной спектроскопии

4.6.1. Аппаратура, реактивы и растворы

Атомно-абсорбционный спектрофотометр со спектральным диапазоном измерения оптической плотности от 190 до 900 нм, с шириной щели монохроматора от 0,1 до 3 мм, дифракционной решеткой 1800 штрихов/мм, с электротермическим атомизатором.

Лампа с полым катодом, соответственно, из алюминия, висмута, железа, кадмия, кальция, кобальта, магния, марганца, меди, никеля, олова, свинца, серебра, хрома, цинка.

Микродозатор с максимальным дозируемым объемом (10±0,1) мм3 или микрошприц МШ-10М.

Шкаф сушильный электрический с температурой нагрева от 40 °C до 200 °C любого типа с погрешностью поддержания температуры ±2 °C.

Колбы 2—1000—2, 2—500—2, 2—100—2, 2—50—2 по ГОСТ 1770.

Пипетки 1-1-2-1, 1-1-2-2, 1-2-2-5, 1-1-2-10, 1-2-2-25 по ГОСТ 29227.

Колбы Кн-1-100-29/32 и Кн-1-250-24/29 ТС по ГОСТ 25336.

Цилиндры 1-50-1, 1(3)-100-2, 2-250-2, 2-500-2, 2-1000-2 по ГОСТ 1770.

Стаканчики СВ-34/12 и СН 45/13 по ГОСТ 25336.

Чаша-100 по ГОСТ 19908.

Банки полиэтиленовые с навинчивающейся крышкой вместимостью 1 дм³.

Вода дистиллированная по ГОСТ 6709, вторично перегнанная в кварцевой аппаратуре, или вода деминерализованная (далее — очищенная вода). Воду сохраняют в полиэтиленовой посуде.

Аргон по ГОСТ 10157, высший сорт.

Кислота азотная по ГОСТ 4461, х.ч., растворы молярной концентрации c (HNO₃) = 0,1 моль/дм³ и 0,001 моль/дм³; растворы с массовой долей 2, 5 и 25 %.

Кислота серная по ГОСТ 4204, х.ч., растворы молярной концентрации c (1/2 H_2SO_4) = 0,1 моль/дм³ и 0,001 моль/дм³.

Кислота соляная по ГОСТ 3118, х.ч., растворы молярной концентрации c (HCl) = 0,2 моль/дм³ и 0,001 моль/дм³, растворы с массовой долей 0,5 и 25 %.

Растворы, содержащие І мг/см³ AI, Bi, Fe (III), Cd, Ca, Co, Mg, Mn (II), Cu, Ni, Sn (IV), Pb, Ag, Cr (III), Zn, готовят по ГОСТ 4212; соответствующим разбавлением получают растворы, содержащие 0,01 мг/дм³ AI, Fe (III), Ca, Mn (II), Cu, Pb, Cr (III), Zn; 0,1 мг/дм³ Ni; 0,02 мг/дм³ Bi, Sn (IV); 0,05 мг/дм³ Co; 0,003 мг/дм³ Ag; 0,005 мг/дм³ Cd, Mg. Растворитель для разбавления основного раствора по ГОСТ 4212, кроме растворов Cd, Ag и Pb, для которых в качестве растворителя используют раствор азотной кислоты с массовой долей 2 %.

Государственные стандартные образцы (ГСО) состава водных растворов катионов с массовой концентрацией 1,0 мг/см³:

алюминия и кадмия - ГСОРМ-ПК 4144-87;

C. 8 FOCT 24147-80

```
висмута — ГСО 6065—91;

железа — ГСОРМ 6068—91;

кальция — ГСОРМ-25 4147—87;

кобальта и никеля — ГСОРМ-24 4146—87;

магния — ГСОРМ-25 4147—87;

марганца и свинца — ГСОРМ-23 4145—87;

меди — ГСОРМ 6073—91;

олова — ГСО 5231—91;

серебра — ГСОРМ-12 3396—90П;

хрома — ГСОРМ-26 4148—87;

цинка — ГСОРМ-23 4145—87 или ГСОРМ 6084—91.

4.6.2. Подготовка к анализу

4.6, 4.6.1, 4.6.2. (Изменения редакция, Изм. № 3).

4.6.2.1: Подготовка прибора
```

В соответствии с инструкцией, прилагаемой к прибору, и табл. 2а устанавливают рабочий режим проведения измерений. Оптимальные условия атомизации в графитовой печи приведены в табл. 2б.

Таблица 2а

Элемент	Длина аналитической линий, им	Ширина щели, мм	Ток ламды; мА
Алюминий Висмут Железо Кадмий Кальций Кобальт Магний Марганец Медь Никель Олово Свинец Серебро Хром	309,3	0,5	4.0
	223,1	0,2	5.0
	248,3	0,5	8.0
	228,8	0,3	5.0
	422,7	0,3	7.0
	240,7	0,2	6.0
	285,2	0,5	4.0
	279,5	0,4	5.0
	324,8	0,5	3.0
	232,0	0,15	4.0
	224,6	0,5	7.0
	217,0	0,3	7.0
	328,1	0,6	3.0
	357,9	0,5	3.0

Таблица -26

		Номер стадии								
Элемент		1		2	:	3			:	5
	Темпе- рату- ра, "С	Время,	Темпе- ратура, °С	Время,	Темпе- ратура, С	Время,	Темпе- ратура, "С	Время,	Темпе- ратура, "С	Время,
Алюминий Висмут Железо Кадмий Кальций Кобальт Магний Марганец Медь Никель Олово Свинец Серебро Хром Цинк	150 150 150 150 150 150 150 150 150 150	30 30 30 30 30 30 30 30 30 30 30 30 30 3	800 200 500 300 700 200 500 500 800 400 500 500 500 500	20 20 20 20 20 20 20 20 20 20 20 20 20 2	1200 400 800 500 1000 400 800 800 800 1200 800 700 700 800 600	30 30 30 30 30 30 30 30 30 30 30 30 30 3	2600 1300 2300 1500 2300 1300 1900 2200 2300 2700 2300 1400 1800 2300 1500	3 4 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	0 0 0 0 0 0 0 0 0 0 0	20 20 30 20 30 20 30 20 20 20 20 20 20 20 20 20

4.6.2.2. Подготовка анализируемой пробы

При определении хрома (III), кальция, магния, железа (III), меди подготовка проб не требуется. Присутствие аммиака не оказывает влияния на определение этих элементов.

- подготовка пробы для определения алюминия
- 22 см³ продукта пипеткой помещают в выпарительную чашу и упаривают на электроплитке досуха, затем в чашу вносят пипеткой 22 см³ раствора соляной кислоты молярной концентрации 0,001 моль/дм³, тщательно смывают стенки чаши и используют полученный раствор для проведения анализа.
 - б) Подготовка пробы для определения висмута
- 22 см³ продукта пипеткой помещают в выпарительную чашу и упаривают на электроплитке досуха, затем в чашу вносят пипеткой 10 см³ раствора азотной кислоты молярной концентрации 0,001 моль/дм³, тшательно смывают стенки чаши и используют полученный раствор для проведения анализа.
 - в) Подготовка проб для определения кадмия, свинца и серебра
- 55 см³ продукта цидиндром помещают в выпарительную чашу и упаривают на электроплитке досуха, затем в чашу вносят пипеткой 10 см³ раствора азотной кислоты с массовой долей 2 %, тщательно смывают стенки чаши и используют полученный раствор для проведения анализа.
 - г) Подготовка пробы для определения кобальта
- 275 см³ продукта цилиндром помещают в выпарительную чашу и упаривают на электроплитке досуха, подливая продукт в чашу по мере упаривания, затем в чашу вносят пипеткой 5 см³ раствора серной кислоты молярной концентрации 0,001 моль/дм³, тщательно смывают стенки чаши и используют полученный раствор для проведения анализа.
 - д) Подготовка пробы для определения марганца
- 22 см³ продукта пипеткой помещают в выпарительную чашу и упаривают на электроплитке досуха, затем в чашу вносят пипеткой 20 см³ очищенной воды, тщательно смывают стенки чаши и используют полученный раствор для проведения анализа.
 - е) Подготовка пробы для определения никеля
- 550 см³ продукта цилиндром помещают в выпарительную чашу и упаривают на электроплитке досуха, подливая продукт в чашу по мере выпаривания, затем в чашу вносят пипеткой 5 см³ раствора серной кислоты молярной концентрации 0,001 моль/дм³, тщательно смывают стенки чаши и используют полученный раствор для проведения анализа.
 - ж) Подготовка пробы для определения олова
- 55 см³ продукта цилиндром помещают в выпарительную чашу и упаривают на электроплитке досуха, затем в чашу вносят пипеткой 10 см³ раствора соляной кислоты молярной концентрации 0,2 моль/дм³, тшательно смывают стенки чаши и используют полученный раствор для проведения анализа.
 - и) Подготовка пробы для определения цинка
- 22 см³ продукта пипеткой помещают в выпарительную чашу и упаривают на электроплитке досуха, затем в чашу вносят пипеткой 20 см³ раствора серной кислоты молярной концентрации 0,001 моль/дм³, тщательно смывают стенки чаши и используют полученный раствор для проведения анализа.
 - 4.6.2.1, 4.6.2.2. (Введены дополнительно, Изм. № 3).
 - 4.6.3. Проведение анализа

Микродозатором вводят в графитовую печь прибора по 10 мм³ очищенной воды или соответствующего растворителя до тех пор, пока значение оптической плотности не станет постоянным. Затем дважды дозируют раствор с известным содержанием определяемого элемента и дважды дозируют анализируемый продукт, подготовленный по п. 4.6.2.2. Массовую концентрацию определяемого элемента рассчитывают автоматически в миллиграммах на кубический дециметр.

4.6.4. Обработка результатов

Массовую долю определяемого элемента (Х) в процентах вычисляют по формуле

$$X = \frac{A V_1 100}{V 0.91 \cdot 1000 \cdot 1000},$$

- где A массовая концентрация определяемого элемента по показаниям прибора, мг/дм3;
 - V_I объем соответствующего растворителя, используемый для подготовки пробы, см³;
 - V объем продукта, взятый для анализа, см3;
 - 0,91 плотность анализируемого продукта, г/см³.

C. 10 FOCT 24147-80

Если подготовка пробы не требуется, массовую долю определяемого элемента (X) в процентах вычисляют по формуле

$$X = \frac{A\ 100}{0.91 \cdot 1000 \cdot 1000} \ .$$

За результат анализа принимают среднеарифметическое результатов двух параллельных определений, абсолютное расхождение между которыми не превышает допускаемое расхождение, равное $0.3 \cdot 10^{-6} \%$ — для алюминия и висмута; $0.17 \cdot 10^{-6} \%$ — для железа и магния; $1.8 \cdot 10^{-7} \%$ — для кадмия; $0.17 \cdot 10^{-5} \%$ — для кальция; $0.14 \cdot 10^{-7} \%$ — для кобальта; $0.8 \cdot 10^{-7} \%$ — для марганца; $0.4 \cdot 10^{-6} \%$ — для меди; $0.15 \cdot 10^{-7} \%$ — для никеля; $0.8 \cdot 10^{-7} \%$ — для свинца; $0.9 \cdot 10^{-6} \%$ — для сребра; $0.9 \cdot 10^{-7} \%$ — для хрома; $0.2 \cdot 10^{-6} \%$ — для цинка.

Допускаемая относительная суммарная погрешность результата анализа для алюминия, кадмия, хрома и цинка ± 18 %, для висмута ± 23 %, для железа ± 20 %, для кальция ± 26 %, для кобальта ± 11 %, для магния ± 26 %, для марганца и меди ± 40 %, для никеля ± 14 %, для олова ± 10 %, для свинца и серебра ± 16 % при доверительной вероятности P=0,95.

При разногласиях в оценке массовой доли примесей (кроме цинка) определение проводят методом атомно-эмиссионной спектроскопии по п. 4.5.

4.6.3, 4.6.4. (Измененная редакция, Изм. № 3).

4.7. Определение массовой доли цинка

4.7.1, Аппаратура, реактивы и растворы

Флуориметр КФЛ-2-1М со светофильтрами: первичным СЗС-21+ФС-6, вторичным ЖС-4+ЖС-17 или флуориметр «Квант» с теми же светофильтрами или установка, собранная по следующей схеме: свет от осветителя ОИ-18, выделенный светофильтром УФС-3, направляется на кювету с анализируемым раствором. Свет люминесценции направляется под углом 90° по отношению к возбуждающему свету и с помощью конденсора фокусируется на шель монохроматора УМ-2, выделяющего свет с длиной волны 520 нм. Интенсивность люминесценции регистрируется высокочувствительным микроамперметром (чувствительностью 1-10−9 А на одно деление шкалы), соединенным с фотоумножителем ФЭУ-38, питаемым высоковольтным стабилизируемым выпрямителем ВС-22.

Пипетки 1(2)—1(2)—2—1 и 1(2)—1(2)—2—5 по ГОСТ 29227.

Пробирка 6 по ГОСТ 19908.

Чашка из фторопласта-4 диаметром 40-50 мм.

Боратный буферный раствор с рН 8,0; готовят по ГОСТ 4919.2 с использованием раствора тетраборнокислого натрия, приготовленного следующим образом: 12,367 г борной кислоты помещают в мерную колбу вместимостью 1 дм³ (ГОСТ 1770), добавляют 100 см³ раствора гидроокиси натрия, тщательно перемещивают и доводят объем раствора водой до метки.

Вода дистиллированная по ГОСТ 6709.

Кислота борная, ос.ч. 13-4.

Кислота соляная особой чистоты по ГОСТ 14261, раствор с массовой долей 0,5 %; готовят по ГОСТ 4517.

Натрия гидроокись по ГОСТ 4328, х.ч., раствор с массовой долей 4 %.

Спирт этиловый ректификованный технический по ГОСТ 18300, высший сорт.

8-(и-толуолсульфониламино)-хинолин, ч.д.а., спиртовой раствор с массовой долей 0,01 %. Соответствующим разбавлением приготовленного раствора спиртом готовят раствор с массовой долей 0,001 %. Разбавленный раствор должен быть свежеприготовленным.

Раствор, содержащий Zn; готовят по ГОСТ 4212. Соответствующим разбавлением приготовленного раствора готовят раствор, содержащий 0,0005 мг Zn в 1 см³.

Соль динатриевая этилендиамин-N, N, N', N'-тетрауксусной кислоты, 2-водная (трилон Б) по ГОСТ 10652, х.ч., раствор с массовой долей 5 %.

(Измененная редакция, Изм. № 2, 3).

4.7.2. Проведение анализа

В четыре фторопластовые чашки помещают по 5,0 см³ (4,5 г) продукта, взятого по объему пипеткой с погрешностью не более 0,05 см³. В третью и четвертую чашки добавляют 0,1 см³ раствора, содержащего 0,0005 мг/см³ цинка, и выпаривают досуха под инфракрасной лампой. Сухие остатки смывают 1 см³ буферного раствора и переносят в четыре кварцевые пробирки.

Одновременно в две другие (пятая и шестая) кварцевые пробирки вводят по 1 см³ буферного раствора, в пятую пробирку 0,1 см³ раствора, содержащего 0,0005 мг/см³ цинка, в шестую

пробирку — 0,1 см³ раствора трилона Б. Затем во все шесть пробирок вводят по 1 см³ разбавленного раствора 8-(n-толуолсульфониламино)-хинолина.

Растворы перемешивают и через 20 мин измеряют интенсивность люминесценции всех растворов при длине волны $\lambda = 520$ нм. Затем в растворы, содержащие анализируемый продукт, вводят по $0.1~{\rm cm}^3$ раствора трилона Б и в тех же условиях измеряют интенсивность люминесценции.

4.7.3. Обработка результатов

Массовую долю цинка в продукте (Х₂) в процентах вычисляют по формуле

$$X_2 = \frac{(m_1 - m_0) \cdot 10^{-6}}{V \cdot o}$$

где m₁ — суммарная масса цинка в продукте, мг;

то — масса цинка в применяемых реактивах, мг;

V — объем анализируемого продукта, см³;

р — плотность анализируемого продукта, равная 0,91 г/см³.

Суммарную массу цинка (т.) в миллиграммах вычисляют по формуле

$$m_1 = \frac{(I_s - I_0) m_{Z_n}}{I_{Z_n} I_s}$$

где I_x — интенсивность люминесценции анализируемого продукта;

 I_0 — интенсивность люминесценции анализируемого продукта в присутствии трилона Б;

 $m_{Z_{11}}$ — масса добавляемого цинка, мг;

І_{2n} — интенсивность люминесценции анализируемого продукта с добавлением цинка.

Массу цинка в применяемых реактивах (то) в миллиграммах вычисляют по формуле

$$m_0 = \frac{(I_x' - I_0') \, m_{\hat{Z}_0}}{I_{Z_0'} I_z},$$

где I,' - интенсивность люминесценции буферного раствора;

I₀' — интенсивность люминесценции буферного раствора с трилоном Б;

 $m_{\rm Zn}$ — масса добавленного цинка, мг;

 I_{z_0} — интенсивность люминесценции буферного раствора с добавкой цинка.

За результат анализа принимают среднеарифметическое результатов двух параллельных определений, относительное расхождение между которыми не превышает допускаемое расхождение, равное 100 %.

Допускаемая относительная суммарная погрешность результата анализа ± 50 % при доверительной вероятности P=0,95.

4.7.2, 4.7.3. (Измененная редакция, Изм. № 2).

4.8. Определение массовых долей калия, натрия, лития

4.8.1. Аппаратура, реактивы и растворы

Фотометр пламенный любого типа, обеспечивающий измерения массовой концентрации калия, натрия, лития в интервале от 0,05 до 0,5 мг/дм³.

Ацетилен растворенный технический по ГОСТ 5457 или пропан и бутан в баллонах.

Воздух сжатый для питания контрольно-измерительных приборов.

Распылитель.

Горелка.

Колба 2-100-2 по ГОСТ 1770.

Пипетки 1-2-2-2 и 1-2-2-10 по ГОСТ 29227.

Цилиндр 2(4)-100-2 по ГОСТ 1770.

Чаша-100 по ГОСТ 19908 или чашка из фторопласта-4 вместимостью 100 см³.

Вода дистиллированная по ГОСТ 6709, вторично перегнанная в кварцевой аппаратуре или вода деминерализованная.

Растворы, содержащие K, Na, Li; готовят по ГОСТ 4212. Соответствующим разбавлением готовят раствор, содержащий по 0,01 мг K, Na, Li в 1 см³ (раствор A).

Государственные стандартные образцы (ГСО) состава водных растворов катионов с массовой концентрацией 1,0 мг/см³:

калия и натрия - ГСОРМ-30 4483-89,

лития — ГСО 5224-90.

C. 12 FOCT 24147-80

Все исходные растворы, растворы сравнения, а также воду, применяемую для их приготовления, необходимо хранить во фторопластовой или кварцевой посуде.

4.8.2. Подготовка к анализу

В три мерные колбы помещают по 20 см³ воды и объемы раствора А, указанные в табл. 2. Объем растворов доводят водой до метки и тщательно перемешивают.

Таблица 2

Номер рас- гвора срав-	Объем раствора А,	Масса каждоі	примеси в 100 сравнения, мг	см ³ растнора	Массовая до	ля примесей в продукт, %	пересчете на
нения	'ciri,	Na	ĸ	Ĺi	Na	K	Li
1 2 3	1,0 1,5 2,0	0,01 0,015 0,02	0,01 0,015 0,02	0,01 0,015 0,02	1-10-6 1,5-10-6 2-10-6	1-10—6 1,5-10—6 2-10—6	1·10-6 1,5·10-6 2·10-6

110 см³ (100 г) продукта, взятого по объему цилиндром с погрешностью не более 1 см³, помещают в кварцевую чашу или фторопластовую чашку, упаривают (в два приема) досуха под инфракрасной лампой (или на графитовой плитке) в условиях, исключающих попадание загрязнений.

В кварцевую чашку с сухим остатком вводят пипеткой 10 см³ воды, тщательно перемешивают и фотометрируют.

4.8.1, 4.8.2. (Измененная редакция, Изм. № 1, 2, 3).

4.8.3. Проведение анализа

Сравнивают интенсивность излучения резонансных линий (нм) натрия 589,0—589,6; калия 766,6 и лития 670,8, возникающих в спектре пламени ацетилен-воздух или пропан-бутан-воздух при введении в него анализируемого раствора и растворов сравнения.

Проводят фотометрирование воды, применяемой для приготовления растворов, а также анализируемого раствора и растворов сравнения в порядке возрастания концентрации примесей натрия, лития и калия.

Затем проводят фотометрирование в обратной последовательности, начиная с максимальной концентрации примесей, и вычисляют среднеарифметическое значение интенсивности излучения для каждого раствора, учитывая в качестве поправки отсчет, полученный при фотометрировании волы.

4.8.4. Обработка результатов

По полученным данным для растворов сравнения строят градуировочный график, откладывая значения интенсивности излучения на оси ординат, массовую долю примесей в пересчете на продукт — на оси абсцисс. Массовые доли натрия, лития и калия находят по графику. За результат анализа принимают среднеарифметическое результатов двух параллельных определений, относительное расхождение между которыми не превышает допускаемое расхождение, равное 20 %.

Допускаемая относительная суммарная погрешность результата анализа $\pm 10\%$ при доверительной вероятности P=0,95.

(Измененная редакция, Изм. № 2).

4.9. Определение массовой доли карбонатов проводят по ГОСТ 3760.

4.10, 4.10.1—4.10.3. (Исключены, Изм. № 3).

4.11. Определение массовой доли сульфатов

4.11.1. Аппаратура, реактивы и растворы

Фотоколориметр или спектрофотометр любого типа, обеспечивающий измерения оптической плотности при длине волны 400—480 нм.

Кюветы толшиной поглощающего свет слоя 5 см.

Пипетки 1-2-2-1, 1-2-2-5, 1-2-2-25 по ГОСТ 29227.

Стакан B-1-100 ТХС или колба Кн-2-100-22 ТХС по ГОСТ 25336.

Цилиндр 2(4)—100—2 по ГОСТ 1770.

Чаша-50 или чаша-100 по ГОСТ 19908.

Колба 1-100-2 по ГОСТ 1770.

Термометр с диапазоном измерения от 0 °С до 100 °С и ценой деления шкалы 1 °С по ГОСТ 28498.

Государственный стандартный образец (ГСО) состава водного раствора сульфат-иона с массовой концентрацией 1,0 мг/см³ — ГСОРН-3 4487—89.

Барий хлористый по ГОСТ 4108, раствор с массовой долей 20 %; готовят по ГОСТ 4517.

Бром по ГОСТ 4109.

Вода бромная; готовят по ГОСТ 4517.

Вода дистиллированная по ГОСТ 6709.

Кислота соляная особой чистоты по ГОСТ 14261, раствор с массовой долей 10 %; готовят по ГОСТ 4517.

Крахмал растворимый по ГОСТ 10163, раствор с массовой долей 1 %; готовят по ГОСТ 4517. Натрий углекислый по ГОСТ 83, х.ч., раствор с массовой долей 1 %.

Раствор, содержащий SO_4 ; готовят по ГОСТ 4212. Соответствующим разбавлением полученного раствора готовят раствор, содержащий 0.01 мг SO_4 в 1 см³.

(Измененная редакция, Изм. № 2, 3).

4.11.2. Подготовка к анализу

4.11.2.1. Построение градуировочного графика

Готовят растворы сравнения и контрольный раствор. Для этого в пять стаканов или конических колб помещают по 25 см³ воды, содержащих соответственно 0,02; 0,04; 0,06; 0,08 и 0,10 мг SO₄. В шестой такой же стакан или колбу сульфаты не добавляют (контрольный раствор).

В каждый раствор прибавляют 1 см³ раствора соляной кислоты и 3 см³ раствора крахмала и тщательно перемешивают в течение 1 мин. Затем прибавляют 3 см³ раствора хлористого бария и снова перемешивают в течение 1 мин и через 30—40 мин измеряют оптическую плотность растворов сравнения на фотоэлектроколориметре с синим светофильтром ($\lambda = 415-420$ нм) по отношению к контрольному раствору.

По полученным данным строят градуировочный график, откладывая на оси абсцисс введенную в растворы сравнения массу сульфатов в миллиграммах, а на оси ординат — соответствующие им значения оптических плотностей.

(Измененная редакция, Изм. № 3).

4.11.3. Проведение анализа

133 см³ (120 г) продукта марки ос.ч. 23—5, взятого по объему цилиндром с погрешностью не более 1 см³, или 22,0 см³ (20 г) продукта марки ос.ч. 16—4, взятого по объему пипеткой с погрешностью не более 0,2 см³, номещают в кварцевую чашу, прибавляют 0,2 см³ раствора углекислого натрия, 0,5 см³ бромной воды и выпаривают досуха в несколько приемов на электроплитке при небольшом нагреве, не допуская кипения, в боксе из органического стекла. Сухой остаток растворяют в 25 см³ воды и раствор переносят в стакан или коническую колбу. Затем к раствору добавляют 1 см³ раствора соляной кислоты, 3 см³ раствора крахмала и, при помешивании, по каплям 3 см³ раствора хлористого бария. Температура анализируемого раствора и растворов сравнения перед прибавлением раствора хлористого бария должна быть 20 °C—25 °C. Далее проводят анализ, как указано в п. 4.11.2.

Массу сульфатов в миллиграммах определяют по градуировочному графику.

Продукт считают соответствующим требованиям настоящего стандарта, если оптическая плотность анализируемого раствора будет не более, чем у раствора сравнения, содержащего 0,04 мг SO₄.

За результат анализа принимают среднеарифметическое результатов двух параллельных определений, относительное расхождение между которыми не превышает допускаемое расхождение, равное 20 %.

Допускаемая относительная суммарная погрешность результата анализа ± 20 % при доверительной вероятности P=0,95.

Допускается заканчивать определение визуально. При этом продукт считают соответствующим требованиям настоящего стандарта, если опалесценция анализируемого раствора будет не интенсивнее опалесценции одновременно приготовленного раствора сравнения с массой SO₄ 0,04 мг.

При разногласиях в оценке массовой доли сульфатов анализ заканчивают фотометрически.

(Измененная редакция, Изм. № 1, 2, 3).

4.12. Определение массовой доли хлоридов

4.12.1. Аппаратура, реактивы и растворы

Фотоколориметр или спектрофотометр любого типа, обеспечивающий измерение оптической плотности при длине волны 400—480 нм.

Кюветы с толщиной поглощающего свет слоя 5 см.

Колба Кн-1-50-14/23 (19/26) ТХС по ГОСТ 25336.

C. 14 FOCT 24147-80

Пипетки 1-2-2-1, 1-2-2-2 по ГОСТ 29227.

Цилиндр 1(3)—50—2 по ГОСТ 1770.

Вода дистиллированная по ГОСТ 6709, вторично перегнанная в кварцевом приборе с прибавлением 1 см³ раствора гидроокиси калия на каждые 500 см³ перегнанной воды или вода деминерализованная.

Калий гидроксид, ос.ч. 18—3 или калия гидроокись по ГОСТ 24363, х.ч., раствор с массовой долей 4 %.

Кислота азотная особой чистоты по ГОСТ 11125, раствор с массовой долей 25 %; готовят по ГОСТ 4517.

Раствор, содержащий CI; готовят по ГОСТ 4212. Соответствующим разбавлением приготовленного раствора водой готовят раствор, содержащий 0,010 мг CI в 1 см³.

Серебро азотнокислое по ГОСТ 1277, х.ч., раствор с массовой долей 1,7 % (хранят в темноте в банке из темного стекла).

Государственный стандартный образец (ГСО) состава водного раствора хлорид-иона с массовой концентрацией 1.0 мг/см³ — ГСОРН-2 4486—89.

(Измененная редакция, Изм. № 1, 2, 3).

4.12.2. Подготовка к анализу

4.12.2.1. Построение градуировочного графика

Готовят растворы сравнения и контрольный раствор. Для этого в три конические колбы помещают по 20 см³ воды, содержащей соответственно 0,005; 0,010; 0,020 мг хлоридов. В четвертую такую же колбу хлориды не добавляют (контрольный раствор).

К растворам прибавляют по 2 см³ раствора азотной кислоты и по 1 см³ раствора азотнокислого серебра. Растворы тщательно перемешивают, через 20 мин измеряют оптическую плотность растворов сравнения на фотоэлектроколориметре при длине волны λ =400—420 нм по отношению к контрольному раствору.

По полученным данным строят градуировочный график, откладывая на оси абсцисс введенную в растворы сравнения массу хлоридов в миллиграммах, а на оси ординат — соответствующие им значения оптических плотностей.

(Измененная редакция, Изм. № 2).

4.12.3. Проведение анализа.

44 см³ (40 г) продукта марки ос.ч. 23—5 или 22 см³ (20 г) продукта марки ос.ч. 16—4, взятых по объему цилиндром с погрешностью не более 1 см³, помещают в коническую колбу (с меткой на 7 см³) и выпаривают на электроплитке с небольшим нагревом, не допуская бурного кипения, до метки. После охлаждения к раствору прибавляют 13 см³ воды, 2 см³ раствора азотной кислоты и 1 см³ раствора азотнокислого серебра. Далее анализ проводят, как указано в п. 4.12.2.1.

Продукт считают соответствующим требованиям настоящего стандарта, если оптическая плотность анализируемого раствора будет не более, чем у раствора сравнения, содержащего 0,010 мг СІ.

За результат анализа принимают среднеарифметическое результатов двух параллельных определений, относительное расхождение между которыми не превышает допускаемое расхождение, равное 30 %.

Допускаемая относительная суммарная погрешность результата анализа ±25 % при доверительной вероятности P=0.95.

Допускается заканчивать определение визуально, при этом продукт считают соответствующим требованиям настоящего стандарта, если наблюдаемая в тех же кюветах на темном фоне опалесценция анализируемого раствора будет не интенсивнее опалесценции раствора сравнения, содержащего 0,010 мг Cl.

Анализ на определение хлоридов проводят при отсутствии паров хлористого водорода.

(Измененная редакция, Изм. № 2, 3).

4.13. Определение массовой доли фосфора

4.13.1. Аппаратура, реактивы и растворы

Пипетки 1-2-2-1 или 1-2-2-2, 1-2-2-5 или 1-2-2-10 по ГОСТ 29227.

Пробирка П1—12—60 XC или П2—10—90 XC по ГОСТ 25336.

Тигель Н(В)-10 или чаша-20 по ГОСТ 19908.

Аммоний молибденовокислый по ГОСТ 3765, х.ч., раствор с массовой долей 5 % (отфильтрованный); хранят в полиэтиленовой посуде.

Вода дистиллированная по ГОСТ 6709, дополнительно перегнанная в кварцевом приборе с добавлением 0,05 см³ раствора серной кислоты на 1 дм³ воды или вода деминерализованнная.

Калий-антимонил виннокислый, 0,5-водный раствор с массовой долей 0,3 %, хранят не более 3 мес.

Кислота аскорбиновая фармакопейная, раствор с массовой долей 1,7 % свежеприготовленный. Кислота серная особой чистоты по ГОСТ 14262, раствор с массовой долей 20 %; готовят по ГОСТ 4517.

Натрий сернокислый по ГОСТ 4166, х.ч., раствор с массовой долей 1 %.

Раствор, содержащий P, готовят по ГОСТ 4212. Соответствующим разбавлением приготовленного раствора готовят раствор, содержащий 0,00100 мг P в 1 см³. Разбавленный раствор должен быть свежеприготовленным.

Реактив на фосфор; готовят следующим образом: смешивают перед использованием 10 см³ раствора серной кислоты, 3 см³ раствора молибденовокислого аммония, 1 см³ раствора 0,5-водного виннокислого калия-антимонила, 6 см³ раствора аскорбиновой кислоты и 5 см³ воды.

Государственный стандартный образец (ГСО) состава водного раствора общего фосфора с массовой концентрацией 0,10 мг/см³ — ГСО 9A 7242—96.

(Измененная редакция, Изм. № 1, 2, 3).

4.13.2. Подготовка к анализу

4.13.2.1. Приготовление растворов сравнения

Готовят растворы сравнения и контрольный раствор. Для этого в три кварцевых тигля или пробирки помещают по 2,4 см³ воды, содержащей соответственно 0,00025; 0,00050 и 0,00100 мг фосфора, в четвертый такой же тигель или пробирку фосфор не добавляют (контрольный раствор). К каждому раствору прибавляют по 0,6 см³ реактива на фосфор и оставляют на 5 мин.

Реактив на фосфор следует добавлять одновременно в растворы сравнения и в раствор анализируемого продукта.

(Измененная редакция, Изм. № 2).

4.13.3. Проведение анализа

5,5 см³ (5,0 г) продукта, взятого по объему пинеткой с погрешностью не более 0,1 см³, помещают в кварцевый тигель или кварцевую чашу, прибавляют 0,2 см³ раствора сернокислого натрия и выпаривают досуха на водяной бане или электроплитке с небольшим нагревом, не допуская кипения, в боксе из органического стекла. Сухой остаток растворяют в 2,4 см³ воды, прибавляют 0,6 см³ реактива на фосфор, перемешивают и оставляют на 5 мин. Затем раствор переносят в пробирку или оставляют в кварцевом тигле.

Окраску анализируемого раствора сравнивают с окраской растворов сравнения.

Продукт считают соответствующим требованиям настоящего стандарта, если наблюдаемая окраска каждой из двух парадлельных проб анализируемого продукта не будет интенсивнее окраски раствора сравнения, содержащего 0,00050 мг фосфора, а окраска контрольного раствора будет значительно менее интенсивна, чем окраска раствора сравнения, содержащего 0,00025 мг фосфора.

Допускаемая относительная суммарная погрешность результата анализа ± 50 % при доверительной вероятности P=0,95.

(Введен дополнительно, Изм. № 2).

4.14. Определение массовой доли кремния

4.14.1. Аппаратура, реактивы и растворы

Спектрофотометр любого типа, обеспечивающий измерения оптической плотности при длине волны 800—880 им.

Кюветы толщиной поглощающего свет слоя 1 см.

Пипетки 1-2-2-1, 1-2-2-2, 1-2-2-25 по ГОСТ 29227.

Тигель В(Н)-10 по ГОСТ 19908.

Чашка из фторопласта-4 вместимостью 30—50 см³ или чашка из платины, изделие № 115—2 или № 118—2 по ГОСТ 6563.

Аммоний молибденовокислый по ГОСТ 3765, х.ч., отфильтрованный раствор с массовой долей 5 %: хранят в полиэтиленовой посуде.

Вода дистиллированная по ГОСТ 6709, дополнительно перегнанная из кварцевого прибора с добавкой 0.05 см³ раствора серной кислоты с массовой долей 20 % на каждый литр воды.

Кислота аскорбиновая фармакопейная, раствор с массовой долей 1 %; готовят перед использованием.

Кислота лимонная моногидрат и безводная по ГОСТ 3652, раствор с массовой долей 10 %.

Кислота серная особой чистоты по ГОСТ 14262, растворы с массовой долей 6,2 и 38 %; готовят по ГОСТ 4517.

C. 16 FOCT 24147-80

Раствор, содержащий Si; готовят по ГОСТ 4212. Соответствующим разбавлением приготовленного раствора готовят раствор, содержащий 0,0010 мг Si в 1 см³. Разбавленный раствор должен быть свежеприготовленным.

Смесь реактивов готовят в день применения следующим образом: сливают вместе 10 см³ раствора аскорбиновой кислоты и 15 см³ раствора серной кислоты с массовой долей 38 %.

Государственный стандартный образец (ГСО) состава водного раствора кремния с массовой концентрацией 1.0 мг/см³ — ГСОРМ 2298—89П.

(Измененная редакция, Изм. № 1, 2, 3).

4.14.2. Подготовка к анализу

4.14.2.1. Построение градуировочного графика

Готовят растворы сравнения и контрольный раствор. Для этого в четыре кварцевых тигля помещают соответственно: 0,0005; 0,0010; 0,0015 и 0,0020 мг кремния, в пятый такой же тигель кремния не добавляют (контрольный раствор).

Доводят объем растворов во всех тиглях водой до 2,2 см³. Прибавляют по 0,2 см³ раствора серной кислоты с массовой долей 6,2 %, по 0,3 см³ раствора молибденовокислого аммония, перемешивают. Содержимое тиглей выдерживают в течение 10 мин. Затем прибавляют по 0,15 см³ раствора лимонной кислоты, по 0,35 см³ смеси реактивов, перемешивают и через 15 мин измеряют оптическую плотность растворов сравнения на спектрофотометре при длине волны $\lambda = 820$ нм по отношению к контрольному раствору.

Строят градуировочный график, откладывая на оси абсцисс введенную в растворы сравнения массу кремния в миллиграммах, а на оси ординат — соответствующие им значения оптических плотностей.

4.14.3. Проведение анализа

22,0 см³ (20,0 г) продукта, взятого по объему пипеткой с погрешностью не более 0,2 см³, помещают во фторопластовую или платиновую чашку и упаривают на водяной бане до объема 2 см³ (нейтральная реакция на вынос по универсальной индикаторной бумаге). К раствору прибавляют 0,2 см³ воды, 0,2 см³ раствора серной кислоты с массовой долей 6,2 %, 0,3 см³ раствора молибденовокислого аммония, выдерживают в течение 10 мин и проводят дальнейшее определение, как указано в п. 4.14.2.1.

Массу кремния в миллиграммах находят по градуировочному графику.

Продукт считают соответствующим требованиям настоящего стандарта, если оптическая плотность анализируемого раствора будет не более, чем у раствора сравнения с массой Si 0,0010 мг.

В случае, если оптическая плотность анализируемого раствора не удовлетворяет указанному выше условию, определение повторяют в условиях, исключающих загрязнение кремнием, выпаривание проводят в боксе из органического стекла, применяют для нагревания водяной бани электроплитку, закрытую металлической пластинкой.

За результат анализа принимают среднеарифметическое результатов двух параллельных определений, относительное расхождение между которыми не превышает допускаемое расхождение, равное 10 %.

Допускаемая относительная суммарная погрешность результата анализа ± 15 % при доверительной вероятности P=0.95.

4.14.2.1, 4.14.3. (Измененная редакция, Изм. № 3).

4.15. Определение массовой доли веществ, восстанавливающих КМпО₄, проводят по ГОСТ 3760

4.16. Определение массовой доли пиридина

4.16.1. Аппаратура, реактивы и растворы

Спектрофотометр любого типа, обеспечивающий измерения оптической плотности при длине волны 200—300 нм.

Кюветы толшиной поглощающего свет слоя 10 см.

Колба 2-100-2 по ГОСТ 1770.

Пипетки 1-2-2-1 или 1-2-2-2 по ГОСТ 29227.

Пиридин по ГОСТ 13647.

Вода дистиллированная по ГОСТ 6709.

(Измененная редакция, Изм. № 2, 3).

4.16.2. Подготовка к анализу

4.16.2.1. Построение градуировочного графика

1,0000 г пиридина помещают в мерную колбу, растворяют в воде, доводят объем раствора водой

до метки и перемешивают. Последовательным разбавлением готовят растворы сравнения с массовой долей $2 \cdot 10^{-5}$; $4 \cdot 10^{-5}$; $6 \cdot 10^{-5}$; $8 \cdot 10^{-5}$; $1 \cdot 10^{-4}$; $1 \cdot 10^{-4}$; $1 \cdot 10^{-4}$; $1 \cdot 10^{-4}$ пиридина, семь кювет заполняют этими растворами; восьмую кювету заполняют водой (контрольный опыт). Снимают спектры полученных растворов в области длин волн 230-270 нм. Рассчитывают оптическую плотность растворов в максимуме полосы 258 нм и строят градуировочный график, откладывая на оси абсцисс введенную в растворы сравнения массовую долю пиридина в процентах, а на оси ординат — соответствующие им значения оптических плотностей.

(Измененная редакция, Изм. № 1, 2, 3).

4.16.3. Проведение анализа

Кварцевую кювету заполняют анализируемым продуктом. Другую такую же кювету заполняют водой. Снимают спектр в области 230—270 нм. Рассчитывают оптическую плотность в максимуме полосы 258 нм.

4.16.4. Обработка результатов

Из определенного по п. 4.16.3 значения оптической плотности (D) в максимуме полосы 258 им вычитают значение 0,12 (фоновое поглощение аммиака) и по найденному значению по градуировочному графику определяют массовую долю пиридина.

За результат анализа принимают среднеарифметическое результатов двух параллельных определений, относительное расхождение между которыми не превышает допускаемое расхождение, равное 10 %.

4.17. Определение массовой доли ртути

4.17.1. Аппаратура, реактивы и растворы

Спектрофотометр любого типа, обеспечивающий измерения оптической плотности при длине волны 490—590 нм.

Кюветы толщиной поглощающего свет слоя 1 см.

Воронка делительная кварцевая вместимостью 30 см3.

Пипетки 1-2-2-1, 1-2-2-2 или 1-2-2-25 по ГОСТ 29227.

Стакан B(H)-1-50 TXC по ГОСТ 25336.

Аммиак водный особой чистоты по настоящему стандарту.

Вода дистиллированная по ГОСТ 6709, вторично перегнанная в кварцевом приборе.

Гидроксиламина гидрохлорид по ГОСТ 5456, раствор с массовой долей 10 %; готовят по ГОСТ 4517.

Дитизон (1,5-дифенилтиокарбазон), раствор молярной концентрации c ($C_{13}H_{12}N_4S$) = = 0,001 моль/дм³ в хлороформе, готовят по точной навеске, хранят в темном месте; соответствующим разбавлением готовят раствор молярной концентрации c ($C_{13}H_{12}N_4S$) = 0,0001 моль/дм³ перед использованием.

Калий марганцовокислый по ГОСТ 20490, х.ч., раствор с массовой долей 1 %.

Кислота серная особой чистоты по ГОСТ 14262, раствор с массовой долей 40 %; готовят по ГОСТ 4517.

Раствор, содержащий Hg(II); готовят по ГОСТ 4212. Соответствующим разбавлением полученного раствора готовят раствор, содержащий 0,010 мг Hg(II) в 1 см³. Разбавленный раствор должен быть свежеприготовленным.

Хлороформ технический по ГОСТ 20015.

Бумага универсальная индикаторная.

Государственный стандартный образец (ГСО) состава водного раствора иона ртути с массовой концентрацией 1,0 мг/см³ — ГСОРМ-11 3395—90П.

(Измененная редакция, Изм. № 1, 2, 3).

4.17.2. Подготовка к анализу

4.17.2.1. Построение градуировочного графика

Готовят растворы сравнения и контрольный раствор. Для этого в пять кварцевых делительных воронок помещают по 20 см³ воды и соответственно 0,001; 0,002; 0,003 и 0,005 мг ртути, в пятую воронку ртуть не добавляют (контрольный раствор). В каждую воронку прибавляют по 0,1 см³ водного аммиака, перемешивают.

Прибавляют по 0,5 см³ раствора серной кислоты и по 0,2 см³ раствора марганцовокислого калия, перемешивают содержимое делительных воронок и выдерживают в течение 5 мин. К окрашенным растворам добавляют по каплям при перемешивании раствор гидрохлорида гидроксиламина до полного исчезновения окраски. (Необходимо следить, чтобы на шлифах делительной воронки не остался окрашенный раствор). Затем приливают по 6 см³ раствора дитизона и энергично встряхи-

вают в течение 3 мин. После полного расслаивания фаз органические фазы тщательно отделяют и переносят в кюветы.

Оптическую плотность экстрактов измеряют на спектрофотометре при длине волны $\lambda = 490$ нм на фоне контрольного экстракта. Строят градуировочный график, откладывая на оси абсцисс введенную в растворы сравнения массу ртути в миллиграммах, а на оси ординат — соответствующие им значения оптических плотностей.

(Измененная редакция, Изм. № 1, 2).

4.17.3. Проведение анализа

25,0 см³ (22,75 г) продукта, взятого по объему пипеткой с погрешностью не более 0,2 см³, помещают в стакан и нагревают до кипения на электроплитке, закрытой стеклотканью, в течение 3—5 мин. Раствор охлаждают и нейтрализуют раствором серной кислоты до рН 3—4 по универсальной индикаторной бумаге. К полученному раствору добавляют еще 0,8 см³ раствора серной кислоты, 0,2 см³ раствора марганцовокислого калия. Перемешивают, нагревают до кипения и кипятят в течение 2—3 мин. Раствор охлаждают, добавляют раствор гидрохлорида гидроксиламина (1—2 капли) до полного обесцвечивания и количественно переносят раствор в кварцевую делительную воронку.

Далее добавляют 6 см³ раствора дитизона молярной концентрации c ($C_{13}H_{12}N_4S$) = = 0.0001 моль/дм³ и встряхивают в течение 3 мин.

После полного расслаивания фаз органическую фазу отделяют и переносят в кювету. Оптическую плотность экстракта измеряют на спектрофотометре при длине волны λ =490 им на фоне контрольного экстракта.

Массу ртуги в миллиграммах определяют по градуировочному графику.

(Измененная редакция, Изм. № 1, 2, 3).

4.17.4. Обработка результатов

Массовую долю ртуги в продукте (X_4) в процентах вычисляют по формуле

$$X_4 = \frac{4 m}{\rho}$$
,

где m — масса ртути в продукте, определенная по градуировочному графику, г;

р — плотность анализируемого продукта, равная 0,91 г/см³.

За результат анализа принимают среднеарифметическое результатов двух параллельных определений, относительное расхождение между которыми не превышает допускаемое расхождение, равное 15 %.

Допускаемая относительная суммарная погрешность результата анализа ± 25 % при доверительной вероятности P=0.95.

(Измененная редакция, Изм. № 2)

4.18. Определение массовой доли сульфидной серы

4.18.1. Аппаратура, реактивы и растворы

Флуориметр «Квант» со светофильтрами: первичным — CC-4+C3C-21; вторичным — ЖС-4+ЖС-18 или установка, состоящая из монохроматора УМ-2, высоковольтного стабилизированного выпрямителя ВС-22, фотоумножителя ФЭУ-38, микроамперметра чувствительностью 1-10−9 А на одно деление шкалы и осветителя ОИ-18 со светофильтром УФС-3. Описание схемы установки дано в п. 4.7.1.

Колба 2-100-2 по ГОСТ 1770.

Пипетки 1-2-2-1, 1-2-2-2 и 1-2-2-25 по ГОСТ 29227.

Пробирка П-2-5-0.1 ТХС по ГОСТ 25336.

Вода дистиллированная по ГОСТ 6709.

Калий гидроксид, ос.ч. 18—3, или калия гидроокись по ГОСТ 24363, х.ч., раствор с массовой долей 1 %.

Натрий сернистый 9-водный по ГОСТ 2053.

Тетрартутьацетат флуоресцеин (ТРАФ), ч.д.а., раствор с массовой долей 0,03 %; готовят следующим образом: растворяют 0,030 г ТРАФ в 100 см³ раствора гидроокиси калия. Раствор хранят в темноте, пригоден в течение 30 сут. В день применения из него готовят раствор с массовой долей 0,0015 % разбавлением исходного раствора гидроокисью калия в 20 раз.

Раствор, содержащий 0,1 мг S в 1 см³, готовят растворением 0,075 г 9-водного сернистого натрия в 100 см³ раствора гидроокиси калия (массовую долю основного вещества 9-водного сернистого натрия проверяют по ГОСТ 2053 и в массу навески вводят соответствующую поправку).

Соответствующим разбавлением полученного раствора раствором гидроокиси калия готовят растворы, содержание 0,0100 и 0,0001 мг S в 1 см³.

(Измененная редакция, Изм. № 1, 2, 3).

- 4.18.2. Подготовка к анализу
- 4.18.2.1. Построение градуировочного графика

Готовят растворы сравнения и контрольный раствор. Для этого в три пробирки, содержащие 4,3; 3,8 и 3,2 см³ раствора гидроокиси калия, помещают 0,5; 1,0 и 1,5 см³, соответственно, раствора, содержащего 0,0001 мг/см³ сульфидной серы (конец пипетки должен быть погружен в раствор гидроокиси калия). В четвертую пробирку, содержащую 4,8 см³ раствора гидроокиси калия, сульфидную серу не вносят (контрольный раствор). Во все пробирки прибавляют по 0,2 см³ раствора ТРАФ с массовой долей 0,0015 %, перемешивают и сразу же измеряют интенсивность люминесценции каждого раствора.

Строят градуировочный график, откладывая на оси абсцисс введенную в растворы сравнения массу серы (S) в миллиграммах, а на оси ординат — соответствующие им значения интенсивности люминесценции.

4.18.3. Проведение анализа

2,2 см³ (2,0 г) продукта, взятого по объему пипеткой с погрешностью не более 0,05 см³, помещают в пробирку, прибавляют 2,6 см³ раствора гидроокиси калия, 0,2 см³ раствора ТРАФ с массовой долей 0,0015 %, перемешивают и сразу же измеряют интенсивность люминесценции анализируемого раствора относительно контрольного раствора.

Массу сульфидной серы в миллиграммах в растворе определяют по градуировочному графику. Продукт считают соответствующим требованиям настоящего стандарта, если интенсивность люминесценции анализируемого раствора будет не менее, чем у раствора сравнения с массой серы 0,0001 мг.

За результат анализа принимают среднеарифметическое результатов двух параллельных определений, относительное расхождение между которыми не превышает допускаемое расхождение, равное 30 %.

Допускаемая относительная суммарная погрешность результата анализа ±20 % при доверительной вероятности P=0.95.

(Измененная редакция, Изм. № 2, 3).

5. УПАКОВКА, МАРКИРОВКА, ТРАНСПОРТИРОВАНИЕ И ХРАНЕНИЕ

Продукт упаковывают и маркируют по ГОСТ 3885.

Вид и тип тары: 8-5, 9-1 (материал тары должен быть без наполнителя).

Группы фасовки: VI, VII (для вида тары 9—1 — до 40 кг).

На тару наносят знак опасности по ГОСТ 19433 (класс опасности 8, подкласс 8.2, черт. 8, классификационный шифр 8213) и номер ООН 2672.

(Измененная редакция, Изм. № 1, 2, 3).

- 5.2. Транспортирование по ГОСТ 3885.
- Хранение по ГОСТ 3885 при температуре не ниже минус 50 °C.
- 5.2, 5.3. (Измененная редакция, Изм, № 3).

6. ГАРАНТИИ ИЗГОТОВИТЕЛЯ

- Изготовитель гарантирует соответствие продукта требованиям настоящего стандарта при соблюдении условий транспортирования и хранения.
 - 6.2. Гарантийный срок хранения продукта 1 год со дня изготовления.

(Измененная редакция, Изм. № 1).

ПРОВЕДЕНИЕ ВНУТРЕННЕГО ОПЕРАТИВНОГО КОНТРОЛЯ (ВОК) ТОЧНОСТИ РЕЗУЛЬТАТОВ АНАЛИЗА

Алгоритм проведения внутреннего оперативного контроля (ВОК) точности:

выбирают пробу водного аммиака особой чистоты из числа проанализированных ранее;

вводят добавку стандартного образца (добавка должна составлять 50 % —150 % от массы компонента в пробе);

проводят подготовку к анализу пробы и пробы с добавкой;

анализируют пробу и пробу с добавкой;

результат контрольной процедуры K_{κ} в процентах вычисляют по формуле

$$K_{\kappa} = \frac{\overline{X}' - \overline{X} - C}{C} \cdot 100 ,$$

где \overline{X}' — масса определяемого компонента в пробе с добавкой, мг;

— масса определяемого компонента в пробе без добавки, мг;

С — масса определяемого компонента в добавке, мг.

Норматив ВОК точности K_D при доверительной вероятности P=0,95 вычисляют по формуле

$$K_D = \sqrt{2} \delta$$
.

где б — относительная суммарная погрешность результата анализа, %.

Точность контрольных измерений, а также точность результатов текущих анализов, выполненных за период, в течение которого условия проведения анализа признают стабильными и соответствующими условиям проведения контрольных измерений, считают удовлетворительными, если

$$|K_x| \le K_D$$
.

Внутренний оперативный контроль точности результатов анализа проводят при проверке качества каждой двадцатой партии продукта, но не реже одного раза в квартал.

ПРИЛОЖЕНИЕ Б Обязательное

ОПРЕДЕЛЕНИЕ КОЭФФИЦИЕНТОВ И ПРОВЕРКА СТАБИЛЬНОСТИ ГРАДУИРОВОЧНОГО ГРАФИКА

Зависимость оптической плотности D от массы (или массовой доли) X определяемого компонента представляет собой уравнение примой

$$D = KX + a, (1)$$

где К — наклон прямой (характеризует чувствительность методики), 1/мг (1/%);

а — отрезок ординаты D при X = 0 (характеризует неисключенное алияние контрольного раствора).

Значение коэффициентов градуировочного графика К и а определяют методом наименьших квадратов по формулам (2) и (3)

$$K = \frac{n \left(\sum_{i=1}^{N} X_i D_i\right) - \left(\sum_{j=1}^{n} D_j\right) \left(\sum_{j=1}^{n} X_i\right)}{n \sum_{j=1}^{n} X_j^2 - \left(\sum_{j=1}^{n} X_j\right)^2};$$
(2)

$$a = \int_{-\infty}^{\infty} D_i - K \sum_{i=1}^{\infty} X_i$$

$$a = \int_{-\infty}^{\infty} \frac{1}{n} \frac{1}{n} \cdot \frac{1}{n} \cdot$$

где n — число растворов сравнения, взятых для построения градуировочного графика;

 X_i — масса определяемого компонента в растворах сравнения, мг (для пиридина — массовая доля, %); D_i — оптическая плотность раствора сравнения.

Проверку стабильности градуировочного графика проводят не менее чем по трем точкам (растворам сравнения с используемыми при анализе реактивами), равномерно распределенным по диапазону измерения. График считают стабильным, если относительное отклонение полученных результатов определения массы (для пиридина — массовой доли) определяемого компонента, найденных по градуировочному графику, от действительного содержания этого компонента в растворе сравнения не превышает ±10 %. При превышении этого значения проводят повторный анализ, приготовив новые растворы сравнения. При повторном превышении указанного норматива (±10 %) необходимо вновь построить градуировочный график.

Стабильность градуировочного графика проверяют не реже одного раза в квартал и обязательно при использовании реактивов новых партий.

ПРИЛОЖЕНИЯ А. Б. (Введены дополнительно, Изм. № 3).

ИНФОРМАЦИОННЫЕ ДАННЫЕ

- 1. РАЗРАБОТАН И ВНЕСЕН Министерством химической промышленности СССР
- 2. УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Постановлением Государственного комитета СССР по стандартам от 08.04.80 № 1946

Изменение № 3 принято Межгосударственным советом по стандартизации, метрологии и сертификации (протокол № 21 от 28.05.2002)

За принятие изменения проголосовали:

Наименование государства	Наименование национального органа по стандартизации
Азербайджанская Республика	Азгосстандарт
Республика Армения Республика Беларусь	Армгосстандарт Госстандарт Республики Беларусь
Республика Казахстан Кыргызская Республика Республика Молдова	Госстандарт Республики Казахстан Кыргызстандарт
Российская Федерация Республика Таджикистан	Молдовастандарт Госстандарт России Таджикстандарт
Туркменистан Республика Узбекистан	Главгосслужба «Туркменстандартлары» Узгосстандарт
Украина	Госстандарт Украины

3. ССЫЛОЧНЫЕ НОРМАТИВНО-ТЕХНИЧЕСКИЕ ДОКУМЕНТЫ

Обозначение НТД, на который дана ссылка	Номер пункта, подпункта
FOCT 12.1.005—88 FOCT 83—79 FOCT 84—76 FOCT 195—77 FOCT 1277—75 FOCT 1770—74 FOCT 2053—77 FOCT 3118—77 FOCT 3652—69 FOCT 3760—79 FOCT 3765—78 FOCT 3773—72 FOCT 3885—73	2.1 4.5.1; 4.11.1 4.5.1 4.5.1; 4.12.1 4.4.1; 4.5.1; 4.6.1; 4.7.1; 4.8.1; 4.11.1; 4.12.1; 4.16.1; 4.18.1 4.18.1 4.6.1 4.14.1 4.3; 4.9; 4.15 4.13.1; 4.14.1 4.5.1 3.1; 4.1.1; 5.1; 5.2; 5.3

Обозначение НТД, на который дана ссылка	Номер пункта, подпункта
ΓΟCT 4108-72	4.11.1
ΓΟCT 4109—79	4.11.1
ΓΟCT 4160—74	4.5.1
ΓΟCT 4166—76	4.13.1
ΓΟCT 4204—77	4.6.1;
ΓOCT 4212—76	4.6.1; 4.7.1; 4.8.1; 4.11.1; 4.12.1; 4.13.1; 4.14.1; 4.17.1
ΓOCT 4328—77	4.7.1
FOCT 4461-77	4.6.1
ΓΟCT 4470—79	4.5.1
FOCT 4517—87	4.7.1; 4.11.1; 4.12.1; 4.13.1; 4.14.1; 4.17.1
ГОСТ 4919.2—77	4.7.1
ΓOCT: 5456—79	4.17.1
FOCT 5457-75	4.8.1
ГОСТ 6563—75	4.4.1; 4.14.1
ΓΟCT 6709—72	4.5.1; 4.6.1; 4.7.1; 4.8.1; 4.11.1; 4.12.1; 4.13.1; 4.14.1;
FOCT 10167 70	4.16.1; 4.17.1; 4.18.1
FOCT 10157—79	4.6.1
ΓΟCT 10163—76 ΓΟCT 10262—73	4.11.1 4.5.1
ΓOCT 10202—73 ΓOCT 10652—73	4.7.1
FOCT 11125—84	4.12.1
ΓOCT 13647—78	4.16.1
ΓΟCT 14261—77	4.7.1; 4.11.1
ΓΟCT 14262—78	4.13.1; 4.14.1; 4.17.1
ΓOCT 18300—87	4.5.1; 4.7.1
ГОСТ 19433—88	5.1
ΓΟCT 19627—74	4.5.1
ΓΟCT 1990890	4.4.1; 4.5.1; 4.6.1; 4.7.1; 4.8.1; 4.11.1; 4.13.1; 4.14.1
ΓΟCT 20015—88	4.17.1
ΓOCT 20490—75.	4.17.1
ΓΟCT 23463—79	4.5.1
FOCT 24363-80	4.12.1; 4:18.1
ΓΟCT 25336—82	4.6.1; 4.11.1; 4.12.1; 4.13.1; 4.17.1; 4.18.1
FOCT 25664→83	4.5.1
ΓΟCT 27025—86	4.1a
ΓOCT 27068—86	4.5.1
ΓΟCT 2849890	4.11.1
ΓΟCT 29227—91	4.5.1; 4.6.1; 4.7.1; 4.8.1; 4.11.1; 4.12.1; 4.13.1; 4.14.1;
TO OTH ADDRESS OF	4.16.1; 4.17.1; 4.18.1
ГОСТ 29251—91	4.7.1

- 4. Ограничение срока действия сиято по протоколу № 5-94 Межгосударственного совета по стандартизации, метрологии и сертификации (ИУС 11-12-94)
- 5. ИЗДАНИЕ (октябрь 2003 г.) с Изменениями № 1, 2, 3, утвержденными в ноябре 1985 г., июне 1990 г., сентябре 2002 г. (ИУС 2—86, 10—90, 12—2002)

Редактор Л.И. Нахимона Технический редактор Л.А. Гусева Корректор В.И. Варенцова Компьютерная верстка А.Н.Золотаревой

Изд..лиц. № 02354 от 44.07,2000. Сдано д набор 24.09.2003. Подписано в печать 19.11.2003. Усл.печ.л. 2,79. Уч.-изд.л. 2,60: Тираж 191 экз. С 12727, Зак. 992.

ИПК Издательство стандартов, 107076 Москва, Колодезный пер., 14.

http:// www.standards.ru e-mail; info@standards.ru Набрано в Издательстве на ПЭВМ Отпечатаво в филиале ИПК Издательство стандартов — тил. "Московский печатник?", 105062 Москва, Лялин пер., 6. Плр № 080102

