

ГОСУДАРСТВЕННЫЙ СТАНДАРТ СОЮЗА ССР

СПЕРМА ЖЕРЕБЦОВ НЕРАЗБАВЛЕННАЯ СВЕЖЕПОЛУЧЕННАЯ

ТЕХНИЧЕСКИЕ УСЛОВИЯ

FOCT 23681-79

Издание официальное

ГОСУДАРСТВЕННЫЙ КОМИТЕТ СССР ПО СТАНДАРТАМ Москва

РАЗРАБОТАН Министерством сельского хозяйства СССР ИСПОЛНИТЕЛИ

Н. Г. Балашов, Г. А. Голикова, М. В. Косенко, А. И. Науменков, В. Н. Родина, Н. К. Романькова, Е. Л. Фомина, Н. Ф. Чуклов

ВНЕСЕН Министерством сельского хозяйства СССР

Член Коллегии А. Д. Третьяков

УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Постановлением Государственного комитета СССР по стандартам от 4 июня 1979 г. № 1997

ГОСУДАРСТВЕННЫЙ СТАНДАРТ СОЮЗА ССР

СПЕРМА ЖЕРЕБЦОВ НЕРАЗБАВЛЕННАЯ СВЕЖЕПОЛУЧЕННАЯ

Технические условия

Fresh non-diluted sperm of stallions. Specification

ГОСТ 23681—79

OKII 989510

Постановлением Государственного комитета СССР по стандартам от 4 июня 1979 г. № 1997 срок действия установлен

с 01.07.1980 г.

Несоблюдение стандарта преследуется по закону

Настоящий стандарт распространяется на свежеполученную неразбавленную сперму, взятую в искусственную вагину от жеребцов в возрасте 3 лет и старше и предназначенную для искусственного осеменения.

1. ТЕХНИЧЕСКИЕ ТРЕБОВАНИЯ

- Свежеполученная неразбавленная сперма жеребцов должна быть сохранена не более 30 мин и соответствовать требованиям настоящего стандарта.
- Сперму получают от здоровых жеребцов с оплодотворяющей способностью спермы не менее 55%.

Примечание. Допускается с разрешения Министерства сельского хозяйства СССР или министерства сельского хозяйства союзной республики получать сперму от высококлассных жеребцов или жеребцов с ценными в генетическом отношении признаками с оплодотворяющей способностью спермы менее 55%.

- 1.3. Свежеполученная неразбавленная сперма жеребцов по органолептическим, физическим, биологическим и морфологическим показателям должна соответствовать требованиям и нормам, указанным в табл. 1.
- 1.4. Сперма, предназначенная для замораживания, должна иметь резистентность к холодовому шоку не ниже 0,1; коэффициент осмотической (физиологической) резистентности спермиев должен быть не ниже 1.

Издание официальное

Перепечатка воспрещена

©Издательство стандартов, 1979

Наименование показателя]	Характеристика и норма
Внешний вид Концентрация спермиев, млн/мл, не менее Подвижность спермиев, баллы, не менее Выживаемость спермиев при 2—5°С при раз- бавлении спермы 1:3 лактозо-хелато-цитратно- желточной средой: показатель абсолютной выживаемости (S), не менее выживаемость, ч, не менее Количество спермиев с анормальной морфоло- гией, %, не более	Однородная жидкость светло-серого цвета, без хлопьев, крови и гноя 150 5,0 450 150

Резистентность к холодовому шоку и коэффициент осмотической (физиологической) резистентности спермиев определяют периодически не реже одного раза в квартал.

1.5. Сперма по ветеринарно-санитарному состоянию должна соответствовать требованиям и нормам, указанным в табл. 2.

Таблица 2

Наименование показателя	Норма
Общее количество бактерий в 1 мл, не более Коли-титр, не более Патогенные и условно патогенные микроорга- низмы	5000 0,1 Не допускаются
Концентрация водородных ионов (рН) при 19±1°C	7,3±0,4

Общее количество бактерий, коли-титр, патогенные и условно патогенные бактерии, концентрацию водородных ионов (рН) определяют предприятия искусственного осеменения периодически не реже одного раза в квартал в лабораториях государственной ветеринарной службы.

2. МЕТОДЫ ИСПЫТАНИЙ

- 2.1. Метод отбора проб
- 2.1.1. Отбор проб по ГОСТ 20909.1—75.
- Внешний вид, цвет, наличие или отсутствие хлопьев, крови, гноя определяют, осматривая сперму в мензурке в проходящем свете при периодическом встряхивании мензурки.

2.3. Концентрацию спермиев определяют в счетной камере по-ГОСТ 20909.5-75 со следующим изменением: сперму разбавляют в 10 или 20 раз, набирая ее до отметки 0,5 или 1,0 и заполняя 3%-ным раствором хлористого натрия до отметки 11.

2.4. Определение подвижности спермиев — по 20909.4—75 со следующим изменением: раствор лимоннокислого

натрия к капле спермы не добавляют.

2.5. Определение показателя абсолютной выживаемости и выживаемости спермиев в часах — по ГОСТ 20909.4-75 следующим изменением: сперму жеребцов разбавляют 1:3 лактозо-хелато-цитратно-желточной средой следующего состава:

вода дистиллированная по ГОСТ 6709-72 - 100 мл;

лактоза — 11 г:

хелатон — 0,1 г:

натрия бикарбонат 4,2%-ный раствор — 0,2 мл;

натрия цитрат 35,7%-ный раствор — 0,25 мл;

желток куриного яйца — 1,6 г;

спермосан-3 по ГОСТ 22636-77 - 30000 ЕД.

2.6. Определение количества спермиев с анормальной морфологией — по ГОСТ 20909.3—75.

2.7. Определение резистентности спермиев

холодовому шоку

Сущность метода заключается в определении выживаемости спермиев после быстрого их охлаждения до температуры 1-3°C.

2.7.1. Аппаратура, материалы и реактивы

Для проведения испытания применяют:

микроскоп биологический марки МБИ или МБР по **8**284—67:

термостат ТМ-1 для микроскопа;

стекла предметные по ГОСТ 9284-75;

стекла покровные размером 18×18 мм по ГОСТ 6672—75;

палочки стеклянные или пипетки пастеровские;

пробирки стеклянные вместимостью 1,5 мл и более;

штатив для пробирок;

глюкозу по ГОСТ 6038-74, 7%-ный раствор.

2.7.2. Подготовка к испытанию

Перед испытанием готовят на прокипяченной дистиллирован-

ной воде 7%-ный раствор глюкозы.

В чистые флаконы, подогретые до 30°C, разливают по 1 мл спермы и добавляют по 3 мл 7%-ного раствора глюкозы, подогретого до 30°C. Все перемешивают.

Готовят ванну со льдом с температурой 1-2°C.

2.7.3. Проведение испытания

В пипетку набирают 0,5 мл спермы, разбавленной 7%-ным раствором глюкозы, и помещают в тонкостенные 1,5-миллилитровые стеклянные пробирки, из расчета на каждую пробу спер-

мы не менее четырех пробирок.

Пробирки со спермой помещают в водяную баню при температуре 37°С на 5 мин. Затем две пробирки с исследуемой спермой переносят в ванну с тающим льдом (температура 1—2°С) и выдерживают 20 мин. Оставшиеся две пробирки выдерживают 20 мин при комнатной температуре.

Подвижность спермиев определяют под микроскопом по ГОСТ

20909.4—75 с изменением, указанным в п. 2.4.

2.7.4. Обработка результатов

Резистентность спермиев к холодовому шоку (R_x) вычисляют по формуле

$$R_{x}=\frac{a_{1}}{a_{2}}$$
,

тде a_1 — подвижность спермиев после холодового шока;

а₂ — подвижность спермиев в пробирках, выдержанных 5 мин при 37°С и 20 мин при комнатной температуре.

За окончательный результат испытания принимают среднее арифметическое результатов двух параллельных определений. Допускаемое расхождение между результатами параллельных определений не должно превышать ± 10%.

Пример. Подвижность спермиев в пробирках, выдержанных 5 мин при 37°С и 20 мин при комнатной температуре,— 6,0 баллов, а спермиев в пробирках, подвергнутых холодовому шоку,— 1,0 балл.

Следовательно, резистентность к холодовому шоку равна

$$R_{\rm x} = \frac{1.0}{6.0} = 0.16$$
.

2.8. Определение коэффициента осмотической (физиологической) резистентности спермиев

Для определения коэффициента осмотической (физиологической) резистентности спермиев устанавливают осмотическую (физиологическую) резистентность, а затем вычисляют коэффициент осмотической (физиологической) резистентности.

2.8.1. Определение осмотической (физиологической) резистент-

ности спермиев

Сущность метода заключается в определении устойчивости спермиев к действию гипотонического раствора глюкозы.

2.8.1.1. Аппаратура, материалы и реактивы

Для проведения испытания применяют:

микроскоп биологический марки МБИ или МБР по ГОСТ 8284—67;

термостат ТМ-1 для микроскопа; флаконы вместимостью 10—15 мл; микропипетки стеклянные;

колбы стеклянные вместимостью 100 мл по ГОСТ 1770-74; стекла предметные по ГОСТ 9284-75;

стекла покровные по ГОСТ 6672-75;

глюкозу по ГОСТ 6038-74, 3, 4, 5 и 6%-ный растворы;

воду дистиллированную по ГОСТ 6709-72.

2.8.1.2. Подготовка к испытанию

При определении осмотической резистентности свежеполученной неразбавленной спермы должны строго соблюдаться правила, предупреждающие холодовый шок спермиев. Растворы и лабораторная посуда, применяемые для проведения испытания, должны быть чистыми и подогретыми до 30—35°C.

Берут по два пенициллиновых флакона с раствором глюкозы каждой из концентрации глюкозы. Глюкозу разливают по-2 мл в каждый флакон. Флаконы закрывают резиновыми пробками и ставят в термостат при температуре 30—35°С на 10—

15 мин.

2.8.1.3. Проведение испытания

В каждый флакон с раствором глюкозы вносят по 0,2 мл испытуемой спермы. Получают разбавление 1:10. Пробирки с разбавленной спермой выдерживают 20 мин при комнатной температуре 18—22°C.

Подвижность спермиев в разбавленной капле определяют по

ГОСТ 20909.4-75 с изменением, указанным в п. 2.4.

2.8.1.4. Обработка результатов

Осмотическую резистентность спермиев (R_0) выражают значением концентрации раствора глюкозы, при которой подвижность спермиев составляет не менее 0,5 балла. Чем ниже концентрация раствора глюкозы, в которой спермии остаются жи-

выми, тем выше осмотическая резистентность спермиев.

Пример. В пробирке 4 (3%-ный раствор глюкозы) определена единичная подвижность спермиев, а в пробирке 3 (4%-ный раствор глюкозы) подвижность спермиев 0,5 балла. Следовательно, значение осмотической резистентности спермиев равно 4. Или, если в пробирке 4 мертвые спермии, в пробирке 3 — единичная подвижность спермиев, а в пробирке 2 (5%-ный раствор глюкозы) — подвижность 0,5 балла, то осмотическая резистентность спермиев равна 5,0.

2.8.2. Коэффициент осмотической (физиологической) резистент-

ности $(R_{\rm H})$ вычисляют по формуле

$$R_{\kappa} = \frac{4}{R_0}$$

где 4 — постоянный коэффициент;

 R_0 — осмотическая резистентность (концентрация раствора глюкозы, %).

- 2.9. Определение "общего количества бактерий по ГОСТ 20909.2—75.
 - 2.10. Определение коли-титра спермы по ГОСТ 20909.2—75.
- 2.11. Патогенные и условно патогенные микроорганизмы устанавливают по гемолитическим свойствам, плазмокоагуляции и способности убивать белых мышей при подкожном или внутрибрющинном введении культуры. При проявлении одного из указанных признаков микроорганизмы считают патогенными.
- 2.12. Определение концентрации водородных ионов (pH) спермы по ГОСТ 20909.5—75.

Редактор Н. Е. Шестакова Технический редактор В. Ю. Смирнова Корректор Е. И. Евтеева

«Сдано в наб. 21,96.79 Подп. в печ. 08,08.79 0,5 п. л. 0,42 уч.-изд. л. Тир. 6000 Цена 3 кож.

Ордена «Знак Почета» Издательство стандартов. Москва, Д-557, Новопресненский пер., 3. Тип. «Московский печатник», Москва, Лялин пер., 6. Зак. 899

