ВОДА ПИТЬЕВАЯ

МЕТОД ОПРЕДЕЛЕНИЯ СОДЕРЖАНИЯ МОЛИБДЕНА

Издание официальное

ИПК ИЗДАТЕЛЬСТВО СТАНДАРТОВ Москва

МЕЖГОСУДАРСТВЕННЫЙ СТАНДАРТ

ВОДА ПИТЬЕВАЯ

Метод определения содержания молибдена

ГОСТ 18308—72

Drinking water.

Method for determination
of molybdenum content

Дата введення 01.01.74

Настоящий стандарт распространяется на питьевую воду и устанавливает колориметрический роданидный метод определения содержания молиблена.

Метод основан на образовании окращенного в оранжево-красный цвет комплексного соединения пятивалентного молибдена с роданидом. Восстановление Мо⁶⁺ до Мо⁵⁺ производится двухлористым оловом. Чувствительность метода составляет (объем исследуемой воды 100 см³) 2,5 мкг/дм³.

1. МЕТОДЫ ОТБОРА ПРОБ

- Пробы воды отбирают по ГОСТ 2874* и ГОСТ 24481.
- Объем пробы воды для определения содержания молибдена должен быть не менее 200 см³.
- Срок между отбором пробы и выполнением анализа должен быть возможно коротким, так как отобранные пробы воды, предназначенные для определения молибдена, не консервируют.

2. АППАРАТУРА, МАТЕРИАЛЫ, РЕАКТИВЫ

Фотоэлектроколориметр, кюветы с толщиной рабочего слоя 10 мм. Посуда мерная лабораторная стеклянная по ГОСТ 1770, ГОСТ 29227 и ГОСТ 29251, вместимостью: колбы мерные 100 и 1000 см³, пипетки 10, 50 и 100 см³ без делений; цилиндры мерные 10 и 100 см³; пробирки колориметрические с притертыми пробками; бюретки с краном вместимостью 25 см³.

*На территории Российской Федерации действует ГОСТ Р 51232-98.

Издание официальное

Перепечатка воспрещена

© ИПК Издательство стандартов, 1999

C. 2 FOCT 18308—72

Делительные воронки вместимостью 250 см³ по ГОСТ 25336.

Аммоний молибденовокислый по ГОСТ 3765.

Спирт изоамиловый по ГОСТ 5830.

Калий марганцовокислый по ГОСТ 20490.

Кислота серная по ГОСТ 4204.

Кислота соляная по ГОСТ 3118.

Калий роданистый по ГОСТ 4139.

Калий-натрий виннокислый (сегнетовая соль) по ГОСТ 5845.

Олово двухлористое по ТУ 6-09-5384.

Олово металлическое по ГОСТ 860.

Углерод четыреххлористый по ГОСТ 20288.

Вода дистиллированная по ГОСТ 6709.

Все реактивы должны быть квалификации ч. д. а.

3. ПОДГОТОВКА К АНАЛИЗУ

- Приготовление основного стандартного раствора молибденовокислого аммония
- 0,184 г (NH₄)₆Mo₇O₂₄ · 4H₂O растворяют в небольшом объеме горячей дистиллированной воды, переносят в мерную колбу вместимостью 1000 см³, охлаждают и доводят объем раствора до метки дистиллированной водой. 1 см³ раствора содержит 100 мкг Mo⁶⁺.
- Приготовление рабочего стандартного раствора молибденовокислого аммония
- 10 см³ основного стандартного раствора разбавляют дистиллированной водой до 1 дм³. 1 см³ раствора содержит 1 мкг Мо⁶⁺.

Необходимо применять свежеприготовленный раствор.

- Приготовление 0, 1 н. раствора марганцовокислого калия Раствор готовится из фиксанала.
- 3.4. Приготовление 33 %-ного раствора виннокислого калия-натрия (сегнетовой соли)
- 50 г KNaC₄H₄O 4H₂O растворяют в 100 см³ дистиллированной воды.
 - 3.5. Приготовление 25 %-ного раствора роданистого калия
 - 25 г KCNS растворяют в 75 см³ дистиллированной воды.
 - 3.6. Приготовление 20 %-ного раствора двухлористого олова
- 20 г SnCl₂ · 2H₂O растворяют при нагревании в 20 см³ соляной кислоты (плотностью 1,19 г/см³) и разбавляют дистиллированной водой до 100 см³.

Для стабилизации восстановительного действия в раствор добавляют несколько кусочков металлического олова.

4. ПРОВЕДЕНИЕ АНАЛИЗА

4.1. Для повышения чувствительности метода и устранения мещающего влияния большинства элементов окращенный молибденово-роданидный комплекс экстрагируют в малый объем органического растворителя. Определение состоит из двух операций: первая — удаление органических веществ, при этом происходит насыщение исследуемой воды изоамиловым спиртом; вторая — экстракция органическим растворителем роданидного комплекса молибдена.

Для выполнения первой операции 100 см³ исследуемой воды помещают в делительную воронку вместимостью 250 см³. Затем добавляют 8—10 см³ серной кислоты (1:1), по каплям 0,1 н. раствор марганцовокислого калия до устойчивой розовой окраски (не исчезающей в течение 5 мин) и 2 см³ смеси изоамилового спирта с четыреххлористым углеродом (1:1). Раствор в воронке взбалтывают в течение 30 с и оставляют в покое до разделения слоев. Если слой органического растворителя, отделенный после экстракции в пробирку, бесцветен, приступают ко второй операции. При наличии окращенного слоя экстракцию органического вещества повторяют до получения бесцветного слоя.

Затем приступают к выполнению второй операции. Для этого после удаления органического вещества к раствору в делительной воронке добавляют 2 см³ 33 %-ного раствора сегнетовой соли, 4 см³ 25 %-ного раствора роданистого калия и 2 см³ 20 %-ного раствора двухлористого олова. После прибавления каждого реактива производят перемешивание. Затем добавляют из бюретки точно 1 см³ смеси изоамилового спирта с четырежлористым углеродом (1:1). Раствор встряхивают в воронке в течение 30 с и оставляют до разделения слоев. Органический слой с небольшим количеством водного слоя сливают в колориметрическую пробирку и сравнивают со шкалой стандартных растворов.

4.2. Для приготовления стандартной шкалы в мерные колбы вместимостью 100 см³ отбирают 0,0; 0,25; 0,5; 1,0; 2,0; 4,0; 6,0; 8,0 см³ рабочего стандартного раствора молибдена, доводят объем дистиллированной водой до 100 см³ и обрабатывают так же, как исследуемую воду. Шкала устойчива в течение одних суток при условии хранения в темном месте при температуре не выше 20 °C.

Если окраска слоя органического растворителя окажется ярче окраски исследуемого образца, соответствующего 6 мкг Mo⁶⁺, то определение повторяют из меньшего объема исследуемой воды, доводят объем его до 100 см³ дистиллированной водой.

- 4.3. Интенсивность полученной окраски измеряют фотометрически. В этом случае для экстрагирования окращенного молибденовороданидного комплекса применяют 5 см³ растворителя (смесь изоамилового спирта с четыреххлористым углеродом (1:1)). Оптическую плотность измеряют с голубым светофильтром (λ = 470—480 нм), используя кювету толщиной рабочего слоя 10 мм.
- 4.4. Для приготовления стандартной шкалы в мерные колбы вместимостью 100 см³ отбирают 0,0; 1,0; 2,0; 4,0; 8,0; 16,0 см³ рабочего стандартного раствора Мо⁶⁺, доводят объем до 100 см³ дистиллированной водой и обрабатывают так же, как исследуемую воду.

При составлении калибровочного графика из значений оптических плотностей исследуемой воды вычитают оптическую плотность контрольной пробы и полученные разности наносят на график против соответствующих концентраций молибдена. Затем из измеренной оптической плотности исследуемой воды вычитают оптическую плотность контрольной пробы.

5. ОБРАБОТКА РЕЗУЛЬТАТОВ

Содержание молибдена (X), мг/дм³, определяют по формуле

$$X = \frac{C \cdot 1000}{V \cdot 1000},$$

где C — содержание молибдена, найденное по стандартной шкале или по калибровочному графику, мкг;

V — объем исследуемой воды, взятый для определения, см³.

Допустимое расхождение между повторными определениями 25 отн. %.

ИНФОРМАЦИОННЫЕ ДАННЫЕ

1. УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Постановлением Государственного комитета стандартов Совета Министров СССР от 28.12.72 № 2356

2. ВВЕДЕН ВПЕРВЫЕ

3. ССЫЛОЧНЫЕ НОРМАТИВНО-ТЕХНИЧЕСКИЕ ДОКУМЕНТЫ

Обозначение НТД, на который дана ссылка	Номер пункта
TOCT 860-75	2
FOCT 1770—74	2
ΓOCT 2874—82	1.1
FOCT 3118-77	2
FOCT 3765—78	2 2
ГОСТ 4139—75	2
FOCT 420477	2
ГОСТ 5830—79	2
ГОСТ 5845—79	2
ГОСТ 6709—72	2
FOCT 20288-74	2
ГОСТ 20490—75	1 2
ГОСТ 24481—80	1.1
ГОСТ 2533682	2
FOCT 2922791	1 2
ГОСТ 29251—91	2
ТУ 609538488	2

- 4. Отраничение срока действия снято Постановлением Госстандарта СССР от 25.12.91 № 2121
- 5. ПЕРЕИЗДАНИЕ. Январь 1999 г.

Редактор Л.В. Афанасенко Технический редактор О.Н. Власова Корректор А.С. Черноусова

Изд. лиц. № 021007 от 10.08.95. Подписано в печать 10.03.99. Усл. печ. л. 0,47. Уч.-изд. л. 0,40. Тираж 112 экз. С2251. Зак. 85.

ИПК Издательство стандартов, 107076, Москва, Колодезный пер., 14. Отпечатано в ИПК Издательство стандартов

